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Abstract

This thesis studies the populations and dynamics of massive black-hole binaries and their mergers,
and explores the implications for electromagnetic and gravitational-wave signals that will be detected in
the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge,
their MBH interact and often pair together. We base our study on the populations of MBH and galaxies
from the ‘Illustris’ cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, how-
ever, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models
for the merger process, like dynamical friction and gravitational wave emission, which are added in post-
processing. Contrary to many previous studies, we find that the most massive binaries with near equal-
mass companions are the most efficient at coalescing; though the process still typically takes gigayears.

From the data produced by these MBH binary populations and their dynamics, we calculate the
expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved
sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongo-
ing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that,
while the current lack of detections is unsurprising, both the background and foreground will plausibly
be detected in the next decade. Unlike previous studies which have predicted the foreground to be signifi-
cantly harder to detect than the background, we find their typical amplitudes are comparable.

With traditional electromagnetic observations, there has also been a dearth of confirmed detections
of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH
systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-
variability surveys. These variables should be detectable in current surveys, and indeed, we expect many
candidates recently identified to be true binaries - though a significant fraction are likely false positives.
Overall, this thesis finds the science of MBH binaries at an exciting cusp: just before incredible break-
throughs in observations, both electromagnetically and in the new age of gravitational wave astrophysics.
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0
Introduction

Black holes (BH) are the most exotic, unfathomable objects in the universe, yet they are virtually
ubiquitous as Massive Black Holes (MBH), where they occupy the majority of massive galaxies in the uni-
verse (e.g. Soltan 1982; Kormendy & Richstone 1995; Magorrian et al. 1998). Especially as Active Galactic
Nuclei (AGN)—the collective term for MBH producing electromagnetic radiation (e.g. Urry & Padovani
1995)—MBH, with masses M ≳ 105 M⊙, are also some of the most studied objects in astrophysics. Our
understanding of MBH and AGN has improved dramatically over the last few decades, largely due to rev-
olutions in computational techniques scales of both individual black-holes and their accretion disks (e.g.
Balbus & Hawley 1998) and on cosmological scales of many galaxies over billions of years (e.g. Di Matteo,
Springel & Hernquist 2005).

MBH Binaries (MBHB), formed after the merger of galaxies each hosting individual MBH, are of
rapidly growing interest in astronomy as our understanding of galaxy evolution has reached maturity (e.g.
Binney & Tremaine 1987), and the field of Gravitational Wave (GW) astrophysics has formally emerged
with the detection of GW150914 by the Laser Interferometer Gravitational-Wave Observatory (LIGO;
The LIGO Scientific Collaboration & the Virgo Collaboration 2016). Like their small, stellar-mass∗ sib-
lings detected by LIGO, MBHB are also expected to produce GW—but with amplitude millions of times
larger. The standard measure of GW amplitude is ‘strain’: a dimensionless measure which is used to re-
fer to two separate (but closely related) quantities. Formally, the metric-strain is the non-Minkowskian,
spacetime-metric perturbation in linearized gravity†, i.e. hµν ≡ gµν − ηµν , while the phenomenological
strain-amplitude(e.g. Anholm et al. 2009) is the observed redshift or contraction, i.e. h ∼ ∆t/t ∼ ∆L/L.

The characteristic amplitude of GW from MBH are near h ∼ 10−15, and typically come from the
most massive systems with M ∼ 109–1010 M⊙. Stellar-mass objects produce strains at much smaller ampli-
tudes, h ∼ 10−22, equivalent to a change in distance of a nanometer across the distance from the Earth to
the Sun, making LIGO’s detections all the more impressive. In addition to GW, MBHB are also believed
to play an important role in numerous other astrophysical phenomena, including: stellar tidal-disruption
events (Ivanov, Polnarev & Saha 2005a), helical structures in relativistic jets (Roos, Kaastra & Hummel
1993), AGN variability (Farris et al. 2014), and MBH wandering through their hosts after being ‘kicked’
by GW recoils (Blecha et al. 2016). In this thesis, in addition to their general dynamics and evolution, we
are focused on direct GW detections, and AGN variability signatures; these topics we focus on henceforth.

LIGO uses interference between orthogonal, kilometer-scale lasers to precisely measure deviations in
path length, with a sensitivity of ∼ 10−23 at frequencies ∼ 30 – 103 Hz. In this regime, LIGO is primarily
sensitive to the final coalescence of roughly stellar-mass binaries (particular neutron stars and stellar-mass

∗The BH so-far detected by LIGO typically have masses of a few dozen solar-masses, but are still generally
referred to as ‘stellar-mass’ BH because of their likely origin from a near-unity number of stars.

†Here, it suffices to say that gµν is a description of the full, dynamic spacetime, while ηµν is the flat, static
portion.

1
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BH). The Laser Interferometer Space Antenna (LISA; Amaro-Seoane et al. 2012) is a proposed space-
based interferometer with a recently successful pathfinder mission (Armano et al. 2016). Based on the
same techniques as LIGO, LISA would include three, much longer baselines of ∼ 106 km, producing lower
frequency sensitivities of ∼ 10−2 Hz at amplitudes h ∼ 10−20. LISA will be sensitive to pre-coalescence
stellar-mass binaries (including galactic white-dwarf systems) and the inspiral of higher-mass systems in-
cluding intermediate-mass and massive BH (∼ 103 – 107 M⊙; e.g. Amaro-Seoane et al. 2007). Most MBH
binaries, with M ≳ 107 M⊙ coalesce below the sensitive band of LISA, though they produce strain am-
plitudes drastically higher than those expected from LIGO and LISA sources, on the order of h ∼ 10−15.
Pulsar Timing Arrays (PTA) are already reaching these sensitivities by precisely timing galactic millisec-
ond pulsars (e.g. Foster & Backer 1990), and correlating those signals across the sky to look for patterns
unique to GW signals (Hellings & Downs 1983).

Before MBH reach the small separations at which their GW signals may become observable (∼ 10−3 pc),
they need to first come together in a galaxy merger (∼ 103 pc), and cross the orders of magnitude in sepa-
ration between those scales. This ‘hardening∗’ process is believed to be governed by interactions between
the MBH and the galaxies’s dark-matter, stellar, and gaseous components. Electromagnetic observations
of AGN in merging galaxies, and systems with AGN exhibiting signatures of multiplicity, are beginning to
provide insights and constraints into our understanding of this exotic and extreme evolution. Excitingly,
we are just reaching a frontier in which PTA constraints on GW, telescopic observations of AGN, and cos-
mological simulations of MBH binaries are all coming together. Together, the evidence suggest that we are
on the precipice of making measurements from sup-parsec separation MBHB identified electromagnetically,
and also detecting GW signals from these incredible, inspiraling behemoths.

In the remainder of this chapter, we present an introduction to the topics underlying this thesis. In
§0.1 we introduce massive black holes and their galactic hosts, with a discussion of the numerical methods
used to model these systems in cosmological environments (§0.1.1), focusing on the Illustris simulations
which we use extensively (§0.1.2). We outline MBH binary merger dynamics in §0.1.3, while a more exten-
sive discussion can be found in §1.3. In §0.2 we describe the basics of GW signal generation by binaries,
and detection by pulsar timing arrays. In §0.3 we present the different methods for identifying signatures
of MBH binaries electromagnetically. Finally, in §0.4 we briefly outline each thesis chapter.

0.1 Massive Black Holes and Galaxies

MBH were inferred (Soltan 1982), and are now observed (e.g. Kormendy & Richstone 1995), in the
majority of massive galaxies. These aren’t chance placements as the mass of the central MBH is strongly
correlated with properties of the host galaxy (Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt
et al. 2000; Marconi & Hunt 2003)—with MBH typically having a mass ∼ 10−3 that of the galaxy’s stellar-
bulge†. Despite the strong correlations, the small relative masses of MBH mean that their gravitational
influence on galaxies are weak. Nonetheless, both objects’s dynamics are coupled as the same gaseous
inflows which trigger bursts of star formation are also known to trigger MBH growth and AGN activity
(Sanders et al. 1988; Barnes & Hernquist 1992). A model of AGN ‘feedback’, in which emission from the
MBH suppresses the further cooling of gas and prevents (or decreases) the efficiency of gas inflow and star
formation (e.g. Di Matteo, Springel & Hernquist 2005), has been gaining traction and has demonstrated
marked success in explaining properties of more massive galaxies.

∗‘Hardening’ refers to the process of a binary becoming more tightly bound, in reference to Heggie’s law (Heg-
gie 1975; Hut 1983).

†Which itself is typically a fraction ∼ 0.1–1.0 of the total stellar mass (e.g. Mendel et al. 2014).

2
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Introduction 0.1 - Massive Black Holes and Galaxies

The observable emission which defines AGN, often the most luminous in the universe, has long been
known as accretion powered (Salpeter 1964; Lynden-Bell 1969). For material to accrete (at some rate:
dM/dt ≡ Ṁ) from large scales onto a compact object with radius r, it must liberate gravitational bind-
ing energy at a related rate,

dE

dt

∣∣∣∣
acc

≡ Lacc ∼ 1
4

Ṁc2
(

r

Rs

)−1

,

where Rs ≡ 2GM/c2 is the Schwarzschild radius. For black holes, where r ∼ Rs, the energy released is
thus a significant fraction of the accretion rest-mass energy ∗. We have made no mention of the manner in
which this energy is liberated. This agnosticism is often parametrized using εrad—the radiative efficiency,
or the fraction of the rest-mass energy which is effectively radiated away†—i.e.,

Lacc = εrad Ṁc2. (1)
We can define a characteristic, effective-maximum luminosity—the Eddington luminosity (e.g. Frank, King
& Raine 2002)—by equating the radiation force from Thomson scattering (with cross-section σT) to that
of gravity,

LEdd ≡ 4πGMmpc

εradσT
≈ 1.3 × 1039 erg s−1

(
M

M⊙

) (εrad

0.1

)−1
. (2)

Using (1), the accretion rate powering such a luminosity—the Eddington accretion rate—can be calcu-
lated:

ṀEdd ≡ LEdd

c2 ≈ 1.4 × 1019 g s−1
(

M

M⊙

) (εrad

0.1

)−1
. (3)

In a seminal paper, Soltan (1982) shows that the total accreted mass required to produce the AGN emis-
sion observed over the history of the universe requires a present day mass density comparable to that of
the observed MBH population.

More detailed models, often in cosmological simulations which strive to reproduce the statistical
properties in large volumes of the universe, have continued to show the accreting-MBH model of AGN
well explains not only observational properties of AGN‡ but also many properties of galaxies populations.
Ironically, and despite this success, the mechanism of progenitor or ‘seed’ formation for MBH remains un-
known (see, e.g., Yu & Tremaine 2002; Ferrarese & Ford 2005). The three primary mechanisms that have
been proposed are: 1) rapid accretion onto initially very massive, Population III stars (e.g. Madau & Rees
2001); 2) the direct collapse of pristine gas in protogalaxies (possibly with a phase as a supermassive star;
e.g. Bromm & Loeb 2003; Begelman, Volonteri & Rees 2006) or 3) runaway, dynamical collisions between
thousands of individual stars in dense stellar systems (e.g. Devecchi & Volonteri 2009). While seed for-
mation continues to be a very active field of study (e.g. Dijkstra, Ferrara & Mesinger 2014), most larger-
volume cosmological simulations—like those discussed below—simply assume that MBH seeds form, with-
out specifying a particular mechanism.

0.1.1 Cosmological Simulations

By their very nature, the cosmological evolution of the universe is determined by a plethora of phe-
nomena on all time and size scales. Depending on the particular focuses of a given study or simulation,

∗Compare this to typical efficiencies of 10−3 and 10−2 for fission and fusion respectively.
†The above (Newtonian and virial) estimate suggests an efficiency of ∼ 1/4, while more careful analytic (e.g.

Salpeter 1964), observational (e.g. Davis & Laor 2011) and numerical (e.g. Noble et al. 2011; Sa̧dowski et al. 2015)
considerations give typical values εrad ≈ 0.1 in radiatively efficient accretion flows which we adopt as a fiducial
value.

‡Including quasars, liners, blazars, etc; for a review of AGN unification, see, Antonucci (1993).
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many different techniques can be used (for a review, see, e.g. Dolag et al. 2008). On the largest length
scales, the universe can be considered as dominated by collisionless cold Dark Matter (DM) in an evolving
spacetime. In this approximation, the universe is typically simulated using ‘N-Body’ pure-gravity∗ simu-
lations on a background expanding universe (i.e. Friedmann-Lemaitre, Peebles 1980). Each ‘particle’ in
these simulations represents some Monte Carlo realizations of the underlying mass-distribution, instead
of a particular, discrete, astrophysical object. Individual close encounters between particles then become
largely meaningless, while producing spurious two-body relaxation and requiring short time-steps to ac-
curately resolve. A gravitational smoothing length, typically a small fraction of the average inter-particle
spacing, is usually introduced to mediate these effects by damping forces on smaller scales.

Instead of directly calculating the force between each of N particles, leading to a N2 computation, ei-
ther a ‘tree’ (Barnes & Hut 1986) or ‘particle-mesh’ (PM; Hockney, Goel & Eastwood 1974) method is typ-
ically used. In the tree method, the simulation volume is recursively subdivided (usually into 8 sub-cubes,
with side-lengths half that of the parent division), until the lowest ‘leaf’ levels contain only 1 (or some
small number) of particles. The force at small distances can be calculated from all nearby particles, while
at large distances the force from entire cubes can be used. In general, the tree will be ‘descended’ until the
solid angle of a cube is below some critical value determined to balance accuracy and speed. In the PM
method, the potential field is discretized onto a grid over which the force can be calculated more efficiently,
often in Fourier space. Recent codes typically hybridize between these methods using the ‘TreePM’ ap-
proach in which a tree (or even direct N-body) calculation can be used at short-distances, and a PM grid
on larger ones (e.g. Springel 2005).

While DM is the primary mass-constituent of the universe, baryonic matter is more observable. On
cosmological scales, most baryons can be treated as a perfect fluid and evolved using conservation equa-
tions (mass, momentum and energy; or the Euler, hydrodynamic and thermodynamic equations respec-
tively) along with a suitable equation of state to describe the microscopic behavior of the gas. Two classes
of methods are typically distinguished for solving hydrodynamic problems depending on whether the con-
servation equations are formulated in the Eulerian ‘grid’ methods (considering volume elements) or La-
grangian ‘Smoothed Particles Hydrodynamics’ (SPH) formalism (considering mass elements).

Eulerian methods discretize a fluid onto a grid (Cen 1992; Ryu et al. 1993), often a regular lattice
in the case of a ‘structured’ grid, and use reconstruction techniques (e.g. Colella & Woodward 1984) to
calculate the hydrodynamic quantities as needed. The hydrodynamic equations then become a series of
‘Riemann’ (i.e. discontinuity) problems to calculate fluxes at grid-boundaries (Courant & Friedrichs 1948).
Grid codes are ultimately limited to some finite spatial resolution based on the grid size. They exhibit ex-
cellent performance over a tremendous range of densities, however, and can be very effective at capturing
discontinuities and shocks which often arise in high-density and super-sonic regions of the universe.

SPH methods are an extension of purely n-body techniques, except particles represent fluid elements
(Gingold & Monaghan 1977; Lucy 1977) instead of purely gravitating masses. One of the strongest advan-
tages of this technique is that for relatively constant-mass elements, high density regions will ‘automati-
cally’ have higher spatial resolutions (Hernquist & Katz 1989). Fluid parameters are calculated by smooth-
ing over each particle using a kernel function with some characteristic ‘smoothing length’, typically calcu-
lated independently for each particle to contain some predetermined number of neighbors (e.g. Springel
& Hernquist 2002). Unfortunately these techniques require an artificial-viscosity term to capture shocks,
which also degrades the resolution of discontinuities (e.g. Monaghan 1992). Additionally, steep density-
gradients can produce spurious pressure forces which hinder SPH’s ability to accurately model dynamical
instabilities (e.g. Hernquist 1993).

∗In particular: solving the collisionless Boltzmann equation coupled with the Poisson equation for gravity.
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A hybrid approach also exists called a ‘moving-mesh’ which strives to capture the benefits of both
SPH and grid-based codes (Fiedler & Mouschovias 1992; Gnedin 1995; Pen 1998). In this technique, the
hydrodynamic equations are solved in a fundamentally Eulerian manner: using grids and grid-boundaries
which can capture discontinuities and sharp density-gradients. At the same time, the grid boundaries are
allowed to deform and align with discontinuities, and cells allowed to move—decrease the velocity gradi-
ents across them. The Illustris simulations, which are used extensively throughout this thesis, are based
on the Arepo moving-mesh code created by Springel (2010). Arepo uses a Voronoi tessellation with mesh
generating points that are allowed to move with the flow, allowing for full Galilean invariance which drasti-
cally improves the accuracy in tracking supersonic elements. A Delaunay triangulation is used to construct
cells based on the tessellation, which together allow for quick mesh-construction; smooth, regular cell mo-
tions and easy mesh refinement.

0.1.2 Illustris

The preceding section has discussed the methods of gravitational and purely-hydrodynamic simu-
lations. Galaxies, however, involve a wealth of additional physics, for example, magnetic fields, thermal
conduction, radiation transfer & radiative cooling, and star formation (e.g. Dolag et al. 2008). The Illus-
tris simulations (Vogelsberger et al. 2014a,b; Genel et al. 2014; Torrey et al. 2014; Rodriguez-Gomez et al.
2015; Sijacki et al. 2015; Nelson et al. 2015; Snyder et al. 2015) are a suite of simulations in a (106.5 Mpc)3

box using Arepo to model gas in moving-mesh cells, along with collisionless DM particles, and extensive
sub-grid models of cooling, star formation, & feedback (Vogelsberger et al. 2013; Torrey et al. 2014). Three
different resolutions were run, each with DM-only and full baryon-physics runs, but we discuss only the
highest resolution, full-physics run.

Simulations are initialized at redshift z = 127 with roughly 6 × 109 of each collisionless DM par-
ticles and hydrodynamic gas cells, where the baryons have masses and softening lengths ∼ 106 M⊙ and
∼ 700 pc respectively. Gas cooling is calculated as a function of density, temperature, metallicity, the local
radiation field of AGN, and the ionizing background radiation (Vogelsberger et al. 2014a). Both primor-
dial and metal line cooling are considered, with corrections for self-shielding. Once gas reaches a critical,
star-formation threshold density, it is given an effective equation-of-state representing a two-phase ISM
of cool clouds in pressure equilibrium with a hot component (Springel & Hernquist 2003). Star formation
is implemented stochastically following a local Kennicutt-Schmidt law and using a Chabrier IMF to con-
struct a coeval population represented by collisionless star particles (Vogelsberger et al. 2014b). Each star
particle tracks the evolution of stars through AGB outflows and type Ia & type II supernovae. Outflows
and supernovae blow metal-enriched gas—with nine different species being tracked—into the surround-
ing medium. Stellar feedback is implemented by coupling thermal energy to the local gas which prevents
a cooling runaway and self-regulates the star formation rate. The full evolution of stars and galaxy over
time is presented in detail in Genel et al. (2014).

Here we summarize some of the important, massive black-hole models in Illustris, but we refer the
reader to Di Matteo, Springel & Hernquist (2005) and Sijacki et al. (2007) for details on the prescrip-
tions, and to Sijacki et al. (2015) for the populations and properties of the MBH resulting from Illustris. A
friends-of-friends algorithm (Davis et al. 1985) is used to identify DM halos as the simulation progresses.
MBH are seeded with a mass of ∼ 105 M⊙ into halos once they reach 7 × 1010 M⊙. To prevent spuri-
ous wandering of MBH particles due to scattering events, the MBH particles are manually repositioned
to their potential minima of their galaxies, which, unfortunately invalidates their velocity and detailed-
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positional information. MBH particles grow both through Bondi-like accretion∗ from the nearby gas, and
by MBH ‘mergers’ which occur instantly once two MBH particles come within a smoothing length of one-
another (∼ kpc). As MBH accrete, they feedback on the environment in three ways. Quasar-mode feed-
back, which occurs for Eddington ratios fEdd ≥ 0.05, uses a bolometric luminosity calculated from a fixed
radiative efficiency (εrad = 0.2) to deposit a fraction of energy (5%) into the surrounding gas. Radio-mode
feedback, active for fEdd < 0.05, deposits a fraction (35%) of the luminosity in randomly placed ‘bubbles’
surrounding the MBH. Finally, radiative-feedback alters the ionization state of local gas which directly
changes its cooling rate.

At the end of the simulation, the volume contains some 6 × 109 star particles, and 32,000 MBH
particles with a history of almost 24,000 merger events †. The match between Illustris and observations
are striking (Vogelsberger et al. 2014a). Galaxy stellar-mass and stellar-luminosity functions along with
star-forming and quenched galaxy-fractions are in excellent agreement with SDSS galaxies, and star for-
mation efficiencies are consistent with abundance matching measurements. The MBH population shows
good agreement with mass-density and mass-function estimates, and derived bolometric and hard x-ray
luminosity functions match AGN observations (Sijacki et al. 2015). Post-processing catalogs of galaxy
merger-rates (Rodriguez-Gomez et al. 2015) in addition to galaxy spectra and photometry (Torrey et al.
2014) have also been produced. These, along with the raw simulation data, are openly available online
(www.illustris-project.org; Nelson et al. 2015).

0.1.3 Binary Dynamics

Mergers between galaxies are a fundamental aspect of hierarchical structure formation (Blumenthal
et al. 1984; White & Frenk 1991), and have been extensively observed (Zwicky 1956; Lotz et al. 2011) and
seen in simulations (Lacey & Cole 1993; Rodriguez-Gomez et al. 2015). This presents two possibilities for
the pair of MBH finding themselves in a merger-remnant: either they also merge, or they persist as mul-
tiples. Because Illustris MBH are manually ‘coalesced’ at ∼ kpc scales, the dynamics of the true merger
process are almost entirely unresolved. There is strong, theoretical motivation for MBH to merge effec-
tively (see below and §1.3, e.g. Hayasaki 2009; Preto et al. 2011; Khan et al. 2013; Goicovic et al. 2017).
Additionally, one might naively expect that MBH must undergo mergers to grow, but this isn’t necessarily
the case. In particular, the linear growth provided by mergers is known to be woefully inadequate to form
the massive quasars observed at high redshifts (e.g. Fan et al. 2006), which require exponential growth
from accretion (e.g. Haiman 2013) to fully blossom. Together with the aforementioned connection between
the accretion history of AGN, and the present day mass-content of MBH (Soltan 1982), it would seem that
binary coalescences are neither necessary nor sufficient to explain most MBH observations (Small & Bland-
ford 1992).

The fate and physics of MBH following a galaxy-merger was first outlined in a pioneering study by
Begelman, Blandford & Rees (1980). The authors describe how the merger progresses through four key
stages of evolution. (1) On large scales (∼ kpc) MBH (and indeed the two merging galaxies as a whole)
are brought together predominantly by dynamical friction, until they meet in the galactic center and form
a binary. (2) At some point, individual three-body scatterings between stars and the binary must be con-
sidered, including depletion of the stars with sufficiently low angular-momentum to interact with the bi-

∗We specify Bondi-like, because while Ṁ ∝ ρ M2/c3
s, where the local density and sound speed are ρ and cs, as

in Bondi (Bondi 1952), the normalization is rescaled to match observed MBH–galaxy scaling relations.
†Though many of these occur for MBH near their seed-mass and may not be entirely physical, see §1.2.1. In

most of our analyses we use rigorous selection cuts to identify both reliable mergers in well-resolved systems. This
usually leads to a population of ∼ 10,000 mergers.
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Figure 1: Characteristic lifetimes and separations for coalescence due to purely GW emission over the rel-
evant parameter space of mass ratio and total mass. The upper panels are colored by time to coalescence
for fixed separations: R = 103 Rs (left), and R = 10−2 pc (right). The lower panels are colored by separa-
tion to coalesce within 108 yr, in units of parsecs (left) and Schwarzschild radii (Rs, right).

nary: the so-called, ‘Loss Cone’ (LC; for a review, see, Merritt & Milosavljević 2005). Using characteristic
quantities, if the LC is effectively replenished (i.e. remains ‘full’), binaries are generally able to continue
merging. If, on the other hand, the LC subsists at a depleted level, binaries will stall: the so-called ‘final-
parsec’ problem (see: Merritt 2013). (3) For binaries in gas-rich systems, which reach sufficiently small
scales (≲ 0.1 pc), gas-drag can contribute significantly to the hardening process. (4) Eventually GW emis-
sion inevitably dominates at the smallest scales (≲ 10−3 pc), finally driving binaries to coalescence. Each
of these processes are discussed in detail in §1.3.

To get a sense of the scales at which gravitational wave emission becomes important, Fig. 1 shows
the GW-inspiral timescales at fixed separation (top row), and the separations to coalesce within a fixed
time (bottom row), for the relevant parameter space of total mass and mass ratio. The left column gives
separations in terms of Schwarzschild radii (Rs = Rs(M = M1 + M2)), and the right column in parsec. A
typical binary, for example M ∼ 107 M⊙ and q ∼ 0.1, must reach ∼ 2 × 10−3 pc ∼ 3 × 103 Rs to merger
within 109 yr, while a binary more characteristic of a prospective GW source, for example M ∼ 109 and
q ∼ 0.3, need only reach ∼ 0.1 pc ∼ 103 Rs.
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Figure 2: Binary separation versus gravitational wave frequency for the total MBHB masses used in
our simulations. The GW frequency for circular orbits is twice the orbital frequency. For the PTA band,
roughly 0.1–1 yr−1, binaries are observable between about 10−3 and 10−1 pc. Most of the GWB amplitude
come from higher mass systems, towards larger separations.

0.2 Gravitational Wave Signals & Pulsar Timing Arrays

Binaries in circular orbits emit gravitational waves at twice their orbital frequency, with a strain am-
plitude given by (e.g. Sesana, Vecchio & Colacino 2008),

hs,circ(fr) = 8
101/2

(GM)5/3

c4 dL
(2πfr)2/3 ∼ 10−15

(
M

109 M⊙

)5/3 (
dL

1 Gpc

)−1 (
fr

1 yr−1

)
, (4)

for a luminosity distance dL, and rest-frame orbital frequency fr. The amplitude of GW from a binary is
strongly effected by the ‘chirp-mass’,

M = (M1M2)3/5

M1/5 = M
q3/5

(1 + q)6/5 , (5)

where the primary and secondary masses are M1 and M2 < M1, the total mass M ≡ M1 + M2, and the
mass-ratio q ≡ M2/M1. To get a sense of typical scales, the relation between orbital period and separation
(Kepler 1619), is shown in Fig. 2 for a variety of relevant total masses. When gravitational-wave emission
is the dominant hardening mechanism, the time a binary spends at a given separation—called the ‘hard-
ening time’ or ‘residence time’—becomes a steep power of the frequency (e.g. Enoki & Nagashima 2007),
τgw ∝ f8/3

r . This leads to a rapid acceleration in inspiral which produces the characteristic ‘chirp’ in fre-
quency as a binary coalesces. For typical MBH binaries, the chirp occurs at frequencies of ∼ 10−6 Hz cor-
responding to periods of ∼ days. For populations of systems, the strong frequency-dependence also means
that the number density of systems in a given volume of the universe drops rapidly as a function of fre-
quency.

GW signals from astrophysical binaries are typically grouped into three categories: (1) ‘determin-
istic’/‘continuous’ sources—individual binary systems which tend to emit monochromatically∗; (2) the
stochastic gravitational-wave background (GWB)—the superposition of many binaries all emitting at com-
parable amplitudes and frequencies; and (3) ‘bursts’, where a single peak of emission (or small number
of cycles) is observed. A particular subclass of burst sources, so-called ‘bursts with memory’ (Braginskii

∗The residence time of the MBHB systems we expect to be detectable as deterministic sources are typically
thousands to millions of years, meaning that they evolve very little in frequency over typical observing spans.
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& Thorne 1987), are especially relevant to PTA (see, e.g., Pshirkov, Baskaran & Postnov 2010; Cordes &
Jenet 2012; Arzoumanian et al. 2015), but in this thesis we focus only on the former two classes of signal.
As mentioned above, the number of binaries in the universe tends to increase at lower frequencies (where
the hardening time is longer). This leads to the GWB becoming dominant at lower frequencies, and de-
terministic sources appearing predominantly at higher frequencies. In a seminal paper, Phinney (2001)
showed that the characteristic GWB spectrum can be calculated analytically by considering a cosmological
population of binaries evolving purely due to GW emission, and integrating the total energy emitted as
gravitational waves over the history of the universe. This, elegant calculation, which is identical in method-
ology to that of Soltan (1982), yields a simple spectrum of the form,

hc(f) = A0

(
f

f0

)−2/3

. (6)

The power-law relation in (6) has become typical for reporting GWB predictions and upper-limits, and is
usually normalized to f0 = 1 yr−1, with an amplitude Ayr−1 . Predictions for the GWB are typically cal-
culated using semi-analytic models (e.g. Wyithe & Loeb 2003; Jaffe & Backer 2003), though Monte Carlo
realizations of hierarchical cosmologies have become popular (Sesana et al. 2004). Predicted amplitudes
almost always lie between log Ayr−1 = −16 and log Ayr−1 = −14.3, with models above log Ayr−1 ≳ −15
strongly disfavored by the most recent upper-limits from pulsar timing arrays (e.g. Shannon et al. 2015).
An extensive list of GWB amplitude predictions are included in §1.1.

PTA are sensitive to Gravitational Waves from MBH binaries at nanohertz frequencies (Sazhin 1978;
Detweiler 1979; Romani & Taylor 1983; Foster & Backer 1990). Three independent PTA are currently in
operation: the European (EPTA, Kramer & Champion 2013; Desvignes et al. 2016), NANOGrav (McLaugh-
lin 2013; The NANOGrav Collaboration et al. 2015), and Parkes (PPTA, Manchester et al. 2013; Reardon
et al. 2016). Additionally, the International PTA (IPTA, Hobbs et al. 2010; Verbiest et al. 2016) is a col-
laboration between all three which uses their combined data to boost sensitivity and better characterize
noise and other systematics. The characteristic sensitivity of a PTA can be estimated as (Rajagopal &
Romani 1995),

hPTA ∼ σN

PGW

(
Tobs

∆tobs

)−1/2

, (7)

for a pulsar-timing RMS σN, GW period PGW, totally observing during Tobs, and observing cadence ∆tobs.
This shows that a PTA’s most-sensitive frequency is its lowest, fmin: determined by Nyquist sampling
from the total observation duration, PGW,max = 1/fmin ∼ Tobs, and thus,

hPTA(fmin) ∼ σN ∆t
1/2
obs T

−3/2
obs ≈ 10−15

( σN

10 ns

) (
∆tobs

0.05 yr

)1/2 (
1 yr
Tobs

)−3/2

. (8)

This scaling is most applicable to the upper limits that can be made on GW strain by a single pulsar. To
truly make a detection, the cross-correlations of pulse time-of-arrival variations from many pulsars must be
shown to properly correlate across the sky, according to a pattern often referred to as the ‘Hellings & Downs
curve’ following Hellings & Downs (1983). The induced timing residual from a particular source is given
by the relation (e.g. Sesana, Vecchio & Volonteri 2009),

δt = hs

f
(Tobs f)1/2 = hc

f
. (9)

Equation (9) can be taken as the definition of the ‘characteristic strain’ hc, which takes into account the
number of cycles over which is a source is observed.
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0.3 Electromagnetic Observations

Galaxy mergers have been observed and identified since the beginnings of extragalactic astronomy,
and systems in which both galaxies have an observable AGN are not uncommon (e.g. Zwicky 1956). While
inferring or directly observing the presence of an MBH Binary in a galaxy is difficult, many techniques
have been developed (see, e.g., Komossa 2006). These methods can be categorized into four groups: spa-
tial offsets, kinematic offsets, morphological indicators, periodic variability.

Spatial offset detection relies on having the angular resolution to discern a pair of ‘dual AGN’ (e.g.
Komossa et al. 2003; Comerford et al. 2009b; Liu et al. 2014) or a single ‘offset AGN’ relative to its host
galaxy or stellar core (e.g. Comerford & Greene 2014). We use the term ‘dual’ to refer to an associated
pair, distinct from a gravitationally bound ‘binary’. Overall, ∼ 10−3 of SDSS quasars could be dual AGN
(Foreman, Volonteri & Dotti 2009). Large enough samples are beginning to be discovered to begin plac-
ing constraints on population statistics, for example showing that dual-AGN occurrence rates are higher
in more-major mergers and luminosities tend to increase at smaller separations (Koss et al. 2012)—both
consistent with predictions for merger-driven fueling of AGN (e.g. Sanders et al. 1988; Barnes & Hernquist
1992). The current record holder for closest-separation system is by Rodriguez et al. (2006) in the radio
galaxy 0402+379, with a projected separation of ∼ 7 pc. Even in this case, it is unclear if the system is
dynamically bound.

Kinematic offsets are identified spectroscopically, and again can be either ‘dual’ or ‘offset’. Kinemat-
ically, a ‘dual’ system has observable lines from two components (double-lines; Comerford et al. 2009a;
Eracleous et al. 2012; Tsalmantza et al. 2011). ‘Offset’ kinematic systems have only single lines observ-
able, but at a noticeable redshift (i.e. velocity offset) relative to the host or other component (e.g. Gaskell
1983). While Wang et al. (2009), for example, reports that as many as 10−2 of SDSS AGN could be dual,
occurrence rates must be carefully vetted as the kinematic technique has seen numerous examples of false-
positives (e.g. Halpern & Filippenko 1988; Eracleous et al. 1997). Unfortunately, double lines can also be
produced by bipolar outflows or jets and even the two sides of an accretion disk (Shen et al. 2011). Many
recent studies have adopted an approach of identifying candidates through double-peaked emission lines
(particularly, [OIII]), and then following them up in search of addition signatures, for example tidal fea-
tures and multiple stellar components (Liu et al. 2010; Fu et al. 2011a), or spatially offset AGN (Fu et al.
2011b; Barrows et al. 2016). These multi-method identification surveys will hopefully provide insights into
a growing number of small-separation candidates identified via kinematic offsets (e.g. Boroson & Lauer
2009; Dotti et al. 2009).

Morphological indicators come in numerous forms. Helical structure in radio jets has been used to
suggest the ongoing presence of a binary (e.g. Roos, Kaastra & Hummel 1993). ‘X-Type’ radio sources
(e.g. Ekers et al. 1978), on the other hand, have been explained as the rapid reorientation of an AGN jet
following its coalescence with another MBH (Merritt & Ekers 2002). Another possible indicator of past bi-
narity is a decrease in the surface brightness of some galaxies towards their core. A decreased core stellar-
density may be due to evacuation or ‘coring’ from a binary inspiral (Lauer et al. 2002), as large numbers
of stars can be ejected by the system as they extract orbital energy from the binary. Morphological indi-
cators, perhaps even more so than kinematic offsets, can be somewhat ambiguous by themselves, but can
certainly bolster the binary hypothesis in systems with additional multiplicity indicators.

Periodic variability surveys examine the brightness of AGN in search of regular modulations which
could indicate the presence of a companion∗ (Fan et al. 2002; De Paolis, Ingrosso & Nucita 2002; Xie et al.

∗Periodic variations of velocity-offset features are also important, but we consider those an extension of the
kinematic method.
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2002). One particular system, OJ287, has shown remarkably consistent outbursts every 12 yr, over a 100
yr baseline, which has been taken as very strong evidence for an eccentric MBHB system, in which the sec-
ondary periodically punctures the disk of the primary (Valtonen et al. 2008). PG 1302-102 (Graham et al.
2015b), is another provocative example of roughly two cycles of sinusoidal variations, in this case, which
can be well explained by doppler-boosting from a mildly relativistic orbital velocity (D’Orazio, Haiman &
Schiminovich 2015). Recent followup however, which extends the observing baseline, fails to see the period-
icity continue Liu, Gezari & Miller 2018. This highlights the dangers of misidentifying red-noise processes,
which appear sinusoidal over poorly-sampled periods, as a truly periodic physical process. One complicat-
ing factor is that while red-noise is expected to become more prevalent at longer periods, so is the overall
occurrence rate of binaries—again due to the strong frequency dependence in hardening rate.

Recently, numerous large-scale surveys have systematically searched for periodic variables in their
AGN samples: Graham et al. (2015a) find 111 candidates in ∼ 240, 000 AGN using the CRTS survey;
Charisi et al. (2016) find 33 in ∼ 35, 000 AGN using PTF; and Liu et al. (2016) initially identify 3 can-
didates in 670 AGN using PanSTARRS, however, none are persistent after adding archival data. If the
variability timescales of ∼yr in the CRTS and PTF candidates are associated with the orbital period of
an MBHB, it means their GW signals would be in the PTA sensitive band—making these an especially
exciting population.

0.4 Thesis Preview

This thesis aims to make comprehensive predictions for the populations, lifetimes, and environments
of MBH binaries. Using these data, we calculate the predicted properties of both the GW background and
foreground (deterministic sources), along with expected times to detection using realistic models of pulsar
timing arrays. We additionally explore the consistency between recently identified periodically-variable,
MBHB candidates and the current upper limits on GW signals from PTA. We then explore predictions for
the occurrence rates and parameter distributions of periodic-variable systems based on different models for
producing their variability.

In Ch. 1 (Kelley, Blecha & Hernquist 2017), we present our population of MBH binaries and their
host galaxies, in addition to their evolution based on comprehensive semi-analytic models of the merger
process. We give merger lifetimes and discuss the properties of systems able to effectively merge within a
Hubble time, in addition to basic predictions of the GWB amplitude based on our data. Chapter 2 (Kelley
et al. 2017) discusses the addition of eccentric binary-evolution to our models, and is primarily dedicated
to a careful calculation of the GWB using a much more accurate, Monte-Carlo method. In addition to
exploring how eccentric and environmental effects impact the GWB spectrum, we use models of the four
existing PTA to calculate expected times-to-detection—finding very promising results. In Ch. 3 (Kelley
et al. 2018a), we analyze our MBHB as individually-resolvable, deterministic GW sources. We present the
statistical properties of typical GW strain amplitudes and pulsar timing-residuals, as a function of evolu-
tionary parameters. In this section we also carefully examine times-to-detection, and find that our results
are different from previous studies. We also present the first careful analysis of varying pulsar red-noise
properties on detection prospects—which remain a highly uncertain aspect of PTA observations.

Electromagnetic observations are the focus of Ch. 4 (Kelley et al. 2018b), in which we predict the de-
tection rates and parameter distributions of periodic-variable AGN, based on our simulated MBHB. Along
with the results of Sesana et al. (2017a), we use these models to compare between the large number of can-
didate MBHB recently identified in numerous optical surveys, with the current most stringent upper limits
on MBHB GW signatures by PTA. In our conclusions (§5), we summarize our most important results and
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their impact on future work. We close by discussing numerous followup studies which are of particular in-
terest.
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abstract

Gravitational Waves (GW) have now been detected from stellar-mass black hole bina-
ries, and the first observations of GW from Massive Black Hole (MBH) Binaries are ex-

pected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years
long periods of GW from MBHB, have excluded many standard predictions for the amplitude
of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies
from hydrodynamic, cosmological simulations (’Illustris’) to calculate a predicted GWB. The
most advanced predictions so far have included binary hardening mechanisms from individual
environmental processes. We present the first calculation including all of the environmental
mechanisms expected to be involved: dynamical friction, stellar ’loss-cone’ scattering, and vis-
cous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple
gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find
all GWB amplitudes to be below the most stringent PTA upper limit of Ayr−1 ≈ 10−15. Our
fairly conservative fiducial model predicts an amplitude of Ayr−1 ≈ 0.4 × 10−15. At lower
frequencies, we find A0.1 yr−1 ≈ 1.5 × 10−15 with spectral indices between −0.4 and −0.6—
significantly flatter than the canonical value of −2/3 due to purely GW-driven evolution. Typ-
ical MBHB driving the GWB signal come from redshifts around 0.3, with total masses of a
few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB
detections, our results can be connected to observations of dual AGN to constrain binary evo-
lution.

1.1 Introduction

Massive Black Holes (MBH) occupy at least the majority of massive galaxies (e.g. Soltan 1982; Kor-
mendy & Richstone 1995; Magorrian et al. 1998) which are also known to merge with each other as part
of their typical lifecycles (e.g. Lacey & Cole 1993; Lotz et al. 2011; Rodriguez-Gomez et al. 2015). This
presents two possibilities for the MBH of host galaxies which merge: either they also merge, or they per-
sist as multiples in the resulting remnant galaxies. Naively, one might expect that BH must undergo merg-
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ers for them to grow—as for halos and to some degree galaxies in the fundamentally hierarchical Lambda-
Cold Dark Matter model (e.g. White & Frenk 1991). On the contrary, the linear growth of black holes
(i.e. at most doublings of mass) is known to be woefully inadequate to form the massive quasars observed
at high redshifts (e.g. Fan et al. 2006), which require exponential growth from Eddington∗ (or super-Eddington)
accretion (e.g. Haiman 2013). Assuming that the energy fueling Active Galactic Nuclei (AGN) comes from
accretion onto compact objects, the integrated luminosity over redshifts requires a present day mass den-
sity comparable to that of observed MBH (Soltan 1982). Coalescences of MBH are then neither sufficient
nor necessary to match their observed properties (e.g. Small & Blandford 1992).

In the last decade the search for multi-MBH systems have yielded many with kiloparsec-scale sepa-
rations (‘Dual AGN’, e.g. Comerford et al. 2012)—although they seem to represent only a fraction of the
population (Koss et al. 2012)—and even some triple systems (e.g. Deane et al. 2014). At separations of
kiloparsecs, ‘Dual MBH’ are far from the ‘hard’ binary phase. A ‘hard’ binary is one in which the binding
energy is larger than the typical kinetic energy of nearby stars (Binney & Tremaine 1987), and relatedly
the binding energy tends to increase (i.e. the system ‘hardens’) with stellar interactions (Hut 1983). ‘Hard’
is also used more informally to highlight systems which behave dynamically as a bound system.. Only one
true MBH Binary (MBHB, i.e. gravitationally bound) system has been confirmed: a resolved system in
the radio galaxy 0402+379, at a separation of ∼ 7 pc by Rodriguez et al. (2006). Even this system is well
outside of the ‘Gravitational Wave (GW) regime’, in which the system could merge within a Hubble time
due purely to GW emission. There are, however, a growing number of candidate, unresolved systems with
possible sub-parsec separations (e.g. Valtonen et al. 2008; Dotti et al. 2009). Detecting—and even more so,
excluding—the presence of MBHB is extremely difficult because activity fractions of AGN (particularly at
low masses) are uncertain, the spheres of influence of MBH are almost never resolved, and the expected
timescales at each separation are unknown. It is then hard to establish if the absence of MBHB observa-
tions is conspicuous.

On the theoretical side, the picture is no more complete. Pioneering work by Begelman, Blandford &
Rees (1980, hereafter BBR80) outlined the basic MBH merger process. On large scales (∼ kpc), MBH are
brought together predominantly by dynamical friction—the deceleration of a body moving against a grav-
itating background. Energy is transferred from the motion of the massive object to a kinetic thermaliza-
tion of the background medium, in this case the dark-matter, stellar and gaseous environment of MBHB
host galaxies. As the binary tightens, stars become the primary scatterers. Once the binary becomes hard
(∼ 10 pc), depletion of the ‘Loss Cone’ (LC)—the region of parameter space with sufficiently low angular
momentum to interact with the MBHB—must be considered. The rate at which the LC is refilled is likely
the largest uncertainty in the merger process, and determines the fraction of systems which are able to
cross the so-called ‘final-parsec’ (for the definitive review, see: Merritt 2013). If binaries are able to reach
smaller scales (≲ 0.1 pc), gas-drag can contribute significantly to the hardening process in gas-rich systems.
Eventually GW emission inevitably dominates at the smallest scales (≲ 10−3 pc).

Since BBR80, the details of the merger process have been studied extensively, largely focusing on the
LC (for a review, see, e.g. Merritt & Milosavljević 2005). Quinlan (1996) and Quinlan & Hernquist (1997)
made significant developments in numerical, N-Body scattering experiments, allowing the ‘measurement’
of binary hardening parameters. More advanced descriptions of the LC, applied to realistic galaxy density
profiles, by Yu (2002) highlighted the role of the galactic gravitational potential—suggesting that flattened

∗The Eddington accretion rate can be related to the Eddington luminosity as ṀEdd = LEdd/εradc2, for a radia-
tive efficiency εrad, i.e.

ṀEdd = 4πGMmp

εradcσT
,

for a proton mass mp, and Thomson-Scattering cross-section σT.
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and strongly triaxial galaxies could be effective at refilling the LC and preventing binaries from stalling.
N-Body simulations have continued to develop and improve our understanding of rotating galaxies (e.g.
Berczik et al. 2006), and more realistic galaxy-merger environments and galaxy shapes (e.g. Khan, Just &
Merritt 2011; Khan et al. 2013). The interpretation and usage of simulations have also developed signifi-
cantly, in step with numerical advancements, allowing for better understanding of the underlying physics
(e.g. Sesana & Khan 2015; Vasiliev, Antonini & Merritt 2015). Smoothed Particle Hydrodynamic (SPH)
simulations of MBH binary dynamics in gaseous environments have also been performed. Escala et al.
(2005a,b) showed that dense gaseous regions, corresponding to ULIRG-like∗ galaxies, can be very effec-
tive at hardening binaries. Similar SPH studies have affirmed and extended these results to more general
environments and MBHB configurations (e.g. Dotti et al. 2007; Cuadra et al. 2009a). While modern sim-
ulations continue to provide invaluable insights, and exciting steps towards simulating MBHB over broad
physical scales are underway (e.g. Khan et al. 2016), neither hydrodynamic nor purely N-Body simulations
are close to simulating the entire merger process in its full complexity†.

With our entrance into the era of Gravitational Wave (GW) astronomy (The LIGO Scientific Collab-
oration & the Virgo Collaboration 2016), we are presented with the prospect of observing compact objects
outside of both the electromagnetic spectrum and numerical simulations. Direct detection experiments
for gravitational waves are based on precisely measuring deviations in path length (via light-travel times).
While ground-based detectors like the Laser Interferometer Gravitational-Wave Observatory (LIGO; LIGO
2016) use the interference of light between two orthogonal, kilometer scale laser arms, Pulsar Timing Ar-
rays (PTA, Foster & Backer 1990) use the kiloparsec scale separations between earth and galactic pulsars
(Detweiler 1979). PTA are sensitive to GW at periods between the total observational baseline and the
cadence between observations. These frequencies, roughly 0.1 − 10 yr−1, are much lower than LIGO—
corresponding to steady orbits of MBHB with total masses between ≈ 106 − 1010 M⊙, at separations of
≈ 10−3 − 10−1 pc (i.e. 1 − 106 Rs

‡). The parameter space is shown in Fig. 2.
Binaries produce GW which increase in amplitude and frequency as the orbit hardens, up to the

‘chirp’ when the binary coalesces. MBHB chirps will be at frequencies below the LIGO band, but above
that of PTA. Future space-based interferometers (e.g. eLISA; The eLISA Consortium et al. 2013) will
bridge the divide and observe not only the coalescence of MBHB, but also years of their final inspiral.
The event rate of nearby, hard MBHB which could be observed as individual ‘continuous wave’ sources
is expected to be quite low, and likely the first GW detections from PTA will be of a stochastic GW Back-
ground (GWB) of unresolved sources (Rosado, Sesana & Gair 2015).

The shape of the GWB spectrum was calculated numerically more than two decades ago (Rajagopal
& Romani 1995), but Phinney (2001) showed that the characteristic GWB spectrum can be calculated an-
alytically by considering the total energy emitted as gravitational waves, integrated over redshift. For a
complete and pedagogical derivation of the GWB spectrum see, e.g., Sesana, Vecchio & Colacino (2008).
The ‘characteristic-strain’, hc(f), can be calculated for a finite number of sources, in some comoving vol-
ume Vc (e.g. a computational box), as,

h2
c(f) = 4π

3c2 (2πf)−4/3 ∑
i

1
(1 + zi)1/3

(GMi)5/3

Vc
. (1.1)

Equation 1.1 is the simplest way to calculate a GW background spectrum, requiring just a distribution of
∗Ultra-Luminous Infra-Red Galaxies (ULIRG) are bright, massive, and gas-rich — all indicators of favorable

MBH merger environments.
†Resolving the interaction of individual stars with a MBHB over the course of the entire merger process, for

example, would require almost nine orders of magnitude contrast in each mass, distance, and time.
‡Schwarzschild radii, Rs ≡ 2GM/c2.
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merger chirp-masses and redshifts. This type of relation is often written as,

hc(f) = A0

(
f

f0

)−2/3

, (1.2)

which has become typical for GWB predictions, and usually normalized to f0 = 1 yr−1 (with some Ayr−1).
The prediction of a GWB with spectral slope of −2/3 is quite general, but does assume purely gravitational-
wave driven hardening which produces a purely power-law evolution in frequency. The lack of high and
low frequency cutoffs is fortuitously accurate at the frequencies observable through PTA, which are well
populated by astrophysical MBHB systems. Deviations from pure power-law behavior within this band,
however, are not only possible but expected—the degree of which, determined by how significant non-GW
effects are, is currently of great interest.

Many predictions have been made for the normalization of the GWB based on extensions to the
method of Phinney (2001). The standard methodology is using Semi-Analytic Models∗ (SAM) of galaxy
evolution, with prescribed MBHB mergers to calculate a GWB amplitude. Two of the earliest examples
are Wyithe & Loeb (2003)—who use analytic mass functions (Press & Schechter 1974) with observed
merger rates (Lacey & Cole 1993), and Jaffe & Backer (2003)—who use observationally derived galaxy
mass functions, pair fractions, and merger time-scales. These studies find amplitudes of log Ayr−1 = −14.3
and log Ayr−1 = −16, respectively which remain as upper and lower bounds to most predictions since then.
Monte Carlo realizations of hierarchical cosmologies (Sesana et al. 2004) exploring varieties of MBHB for-
mation channels (e.g. Sesana, Vecchio & Colacino 2008; Sesana 2013b; Roebber et al. 2016) have been ex-
tremely fruitful in populating and understanding the parameter space, finding GWB amplitudes generally
consistent with log Ayr−1 ≈ −15±1. Sesana et al. (2016) find that accounting for bias in MBH-Host scaling
relations moves SAM predictions towards the lower end of this range at log Ayr−1 = −15.4.

More extensive models exploring deviations from the purely power-law GWB have also been ex-
plored. For example, at higher frequencies (≳ 1 yr−1) from a finite numbers of sources (Sesana, Vecchio
& Volonteri 2009), or at lower frequencies due to eccentric binary evolution (e.g. Sesana 2010). Recently,
much work has focused on the ‘environmental effects’ outlined by BBR80. Kocsis & Sesana (2011) incor-
porate viscous drag from a circumbinary gaseous disk (Haiman, Kocsis & Menou 2009, hereafter HKM09)
on top of halos and mergers from the dark-matter only Millennium simulations (Springel et al. 2005), with
MBH added in post-processing. They find a fairly low amplitude GWB, log Ayr−1 ≈ −16 ± 0.5, with a
flattening spectrum below ∼ 1 yr−1. Ravi et al. (2014) explore eccentric binary evolution in an always ef-
fectively refilled (i.e. full) LC using the Millennium simulation with the SAM of Guo et al. (2011). They
find log Ayr−1 ≈ −15 ± 0.5 with an turnover in the GWB below ∼ 10−2 yr−1 and significant attenuation
up to ∼ 10−1 yr−1. Recently, both McWilliams, Ostriker & Pretorius (2014) and Kulier et al. (2015) have
implemented explicit dynamical-friction formalisms along with recent MBH–Host scaling relations (Mc-
Connell & Ma 2013) applied to halo mass functions from Press-Schechter and the Millenium simulations
respectively. McWilliams, Ostriker & Pretorius (2014) find log Ayr−1 ≈ 14.4 ± 0.3, and Kulier et al. (2015)
log Ayr−1 ≈ 14.7 ± 0.1, with both highlighting the non-negligible fraction of binaries stalled at kiloparsec-
scale separations. Almost all previous studies had assumed that all MBHB merge effectively.

These predictions are summarized in Table 1.1. While far from exhaustive, we believe they are a rep-
resentative sample, with specific attention to recent work on environmental effects. The amplitudes of the
predicted backgrounds are distributed fairly consistently around Ayr−1 ≈ 10−15. Assuming observational
baselines of about 10 yr, pulsar TOA accuracies of at least tens of microseconds are required to constrain
or observe a GWB with this amplitude (see, e.g. Blandford, Romani & Narayan 1984; Rajagopal & Ro-

∗We use the term ‘Semi-Analytic Model’ loosely to refer to a realized population constructed by an analytic
prescription, as apposed to derived from underlying physical models.
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mani 1995). Finding more millisecond pulsars with very small intrinsic timing noise are key to improving
GWB upper-limits, while increasing the total number (and angular distribution) of pulsars will be instru-
mental for detections (Taylor et al. 2016b).

There are currently three ongoing PTA groups, the North-American Nanohertz Observatory for
Gravitational-waves (NANOGrav, The NANOGrav Collaboration et al. 2015), the European PTA (EPTA,
Desvignes et al. 2016), and the Parkes PTA (PPTA, Manchester et al. 2013). Additionally, the Interna-
tional PTA (IPTA, Hobbs et al. 2010) aims to combine the data sets from each individual project, and has
recently produced their first public data release (Verbiest et al. 2016). Table 1.2 summarizes the current
upper limits from each PTA. These are the 2–σ upper bounds, based on both extrapolation to Ayr−1 along
with that of the specific frequency with the strongest constraint assuming a −2/3 spectral index. Over-
all, the lowest bound is from the PPTA, at Ayr−1 < 10−15, or in terms of the fractional closure density,
ΩGW(f = 0.2 yr−1) < 2.3 × 10−10 (Shannon et al. 2015).
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GWB Amplitude∗ Populations Spectral Slope
Reference log Ayr−1 Galaxies Black Holes MBHB Evolution [Deviations from −2/3]
Jaffe & Backer (2003) −16 SAM SAM GW -
Wyithe & Loeb (2003) −14.3 SAM SAM GW -
Kocsis & Sesana (2011) −15.7 ± 0.3 Cosmo-DM SAM VD, GW flattened
Sesana (2013b) −15.1 ± 0.3 SAM SAM GW -
McWilliams, Ostriker & Pretorius (2014) −14.4 ± 0.3 SAM SAM DF, GW imposed cutoff
Ravi et al. (2014) −14.9 ± 0.25 Cosmo-DM SAM LC-Full†, GW flattened & cutoff
Kulier et al. (2015) −14.7 ± 0.1 Cosmo-Hydro SAM DF, GW -
Roebber et al. (2016) −15.2+0.4

−0.2 Cosmo-DM SAM GW -
Sesana et al. (2016) −15.4 ± 0.4 SAM SAM GW -

∗Some values which were not given explicitly in the included references were estimated based on their figures, and thus should be
taken as approximate.
†In this case, the LC prescription is effectively always ‘Full’.

Table 1.1: Representative sample of previous predictions for the GW Background, with a basic summary of their implementation. ‘Semi-Analytic
Model (SAM)’ is used loosely to refer to numerical models based on scaling relations and observed populations. ‘Cosmo-DM’ are cosmological Dark-
Matter only (N-Body) simulations, while ‘Cosmo-Hydro’ are hydrodynamic simulations including baryons. The physical evolution effects included
are: Dynamical Friction (DF), Loss-Cone (LC) stellar scattering, Viscous Drag (VD) from a circumbinary disk, and Gravitational Wave (GW) ra-
diation. In this study we use populations of both galaxies and MBH which coevolved in the cosmological, hydrodynamic simulations ‘Illustris’, and
include all mechanisms of hardening (DF, LC, VD & GW) in our models.
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Strongest Constraint

PTA Ayr−1 Af,0 f0 [yr−1] Reference

European 3.0 × 10−15 1.1 × 10−14 0.16 Lentati et al. (2015)
NANOGrav 1.5 × 10−15 4.1 × 10−15 0.22 Arzoumanian et al. (2016)
Parkes 1.0 × 10−15 2.9 × 10−15 0.2 Shannon et al. (2015)
IPTA 1.5 × 10−15 - - Verbiest et al. (2016)

Table 1.2: Upper Limits on the GW Background from Pulsar Timing Arrays. Values are given both at
the standard normalization of f = 1 yr−1 in addition to the frequency and amplitude of the strongest
constraint (when given).
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Every existing prediction has been made with the use of SAM—mostly in the construction of the
galaxy population, but also in how black holes are added onto those galaxies. SAM are extremely effective
in efficiently creating large populations based on observational relations. Higher-order, less observation-
ally constrained parameters can have systemic biases however, for example galaxy merger rates (see, e.g.
Hopkins et al. 2010)—which are obviously critical to understanding MBHB evolution. Recently, Rodriguez-
Gomez et al. (2015) have shown that merger rates from the cosmological, hydrodynamic Illustris simu-
lations (Vogelsberger et al. 2014a) show excellent agreement with observations, while differing (at times
substantially) from many canonical SAM.

In this paper, we use results from the Illustris (Genel et al. 2014) simulations (discussed in §1.2)
to make predictions for the rates at which MBH form binaries, and evolve to coalescence. Illustris pro-
vides the MBH population along with their self-consistently derived parent galaxies and associated stel-
lar, gaseous, and dark- matter components. This is the first time that a hydrodynamic galaxy population,
with fully co-evolved MBH have been used to calculate a GWB spectrum. We use these as the starting
point for post-processed models of the unresolved merger dynamics themselves, including all of the un-
derlying hardening mechanisms: dynamical friction, loss-cone stellar scattering, viscous drag, and GW
evolution—again for the first time (§1.3) in a MBHB population calculation. From these data, we make
predictions for plausible GW backgrounds observable by PTA, focusing on the effects of different partic-
ular mechanisms on the resulting spectrum such that future detections and upper-limits can be used to
constrain the physical merger process (§1.4).

In addition to the GWB, understanding the population of MBHB is also important for future space-
based GW observatories (e.g. eLISA The eLISA Consortium et al. 2013). Solid predictions for binary
timescales at different separations will also be instrumental in interpreting observations of dual- and binary-
AGN, in addition to offset and ‘kicked’ BHs (Blecha et al. 2016). Finally, MBHB could play a significant
role in triggering stellar Tidal Disruption Events (TDE; e.g. Ivanov, Polnarev & Saha 2005b; Chen et al.
2009), and explaining the distribution of observed TDE host galaxies.

1.2 The Illustris Simulations

Illustris are a suite of cosmological, hydrodynamic simulations which have accurately reproduced
both large-scale statistics of thousands of galaxies at the same time as the detailed internal structures
of ellipticals and spirals (Vogelsberger et al. 2014a). Illustris—hereafter referring to Illustris-1, the high-
est resolution of three runs—is a cosmological box of 106.5 Mpc on a side, with 18203 each gas cells and
dark-matter particles. The simulations use the moving, unstructured-mesh hydrodynamic code AREPO
(Springel 2010), with superposed SPH particles (e.g. Springel et al. 2005) representing stars (roughly 1.3 ×
106 M⊙ mass resolution, 700 pc gravitational softening length), dark-matter (DM; 6.3 × 106 M⊙, 1.4 kpc),
and MBH (seeded at M ≈ 105 M⊙) and allowed to accrete and evolve dynamically. Stars form and evolve,
feeding back and enriching their local environments, over the course of the simulation which is initialized
at redshift z = 137 and evolved until z = 0 at which point there are over 3 × 108 star particles.

For a comprehensive presentation of the galaxy formation models (e.g. cooling, inter-stellar medium,
stellar evolution, chemical enrichment) see the papers: Vogelsberger et al. (2013) and Torrey et al. (2014).
For detailed descriptions of the general results of the Illustris simulations, and comparisons of their proper-
ties with the observed universe, see e.g., Vogelsberger et al. (2014b), Genel et al. (2014), and Sijacki et al.
(2015). Finally, the data for the Illustris simulations, and auxiliary files containing the black hole data∗

∗The blackhole data files were made public in late Sept. 2016.

20



www.manaraa.com

MBH Binaries in Dynamical Environments 1.2 - The Illustris Simulations

used for this analysis, have been made publicly available online (www.illustris-project.org; Nelson et al.
2015).

1.2.1 The Black Hole Merger Population

Black holes are implemented as massive, collisionless ‘sink’ particles seeded into sufficiency massive
halos. Specifically, halos with a total mass above 7.1 × 1010 M⊙, identified using an on the fly Friends-
Of-Friends (FOF) algorithm, which don’t already have a MBH are given one with a seed mass, Mseed =
1.42 × 105 M⊙ (Sijacki et al. 2007). The highest density gas cell in the halo is converted into the BH parti-
cle. The BH mass is tracked as an internal quantity, while the particle overall retains a dynamical mass
initially equal to the total mass of its predecessor gas cell (Vogelsberger et al. 2013). The internal BH
mass grows by Eddington-limited, Bondi-Hoyle accretion from its parent gas cell (i.e. the total dynami-
cal mass remains the same). Once the excess mass of the parent is depleted, mass is accreted from nearby
gas particles—increasing both the dynamical mass of the sink particle, and the internal BH-mass quantity.

BH sink particles typically have masses comparable to (or within a few orders of magnitude of) that
of the nearby stellar and DM particles. Freely evolving BH particles would then scatter around their host
halo, instead of dynamically settling to their center—as is the case physically. To resolve this issue, BH
particles in Illustris are repositioned to the potential minima of their host halos. For this reason, their
parametric velocities are not physically meaningful. Black hole “mergers” occur in the simulation when-
ever two MBH particles come within a particle smoothing-length of one another—typically on the order
of a kiloparsec. This project aims to fill in the merger process unresolved in Illustris. In our model, an Il-
lustris “merger” corresponds to the formation of a MBH binary system, which we then evolve. To avoid
confusion, we try to use the term ‘coalescence’ to refer to the point at which such a binary would actually
collide, given arbitrary resolution.

Over the course of the Illustris run, 135 ‘snapshots’ were produced, each of which include internal
parameters of all simulation particles. Additional black-hole–specific output was also recorded at every
time-step, providing much higher time resolution for black hole accretion rates∗, local gas densities and
most notably, merger events. The entire set of mergers—a time and pair of BH masses—constitutes our
initial population of MBH binaries.

The distribution of BH masses is peaked at the lowest masses. Many of these black holes are short-
lived: their small, usually satellite, host of-matter halos often quickly merge with a nearby neighbor—
producing a BH ‘merger’ event. Additionally, in some cases, the identification of a particular matter over-
density as a halo by the FOF halo-finder, while transient, may be sufficiently massive to trigger the cre-
ation of a new MBH seed particle. This seed can then quickly merge with the MBH in a nearby massive
halo. Due to the significant uncertainties in our understanding of MBH and MBH-seed formation, it is un-
clear if and when these processes are physical. For this reason we implement a mass cut on merger events,
to ensure that each component BH has M• > 106 M⊙ ≈ 10 Mseed. Whether or not these ‘fast-mergers’ are
non-physical, the mass cut is effective at excluding them from our analysis. The entire Illustris simulation
has 23708 MBH merger events; applying the mass cut excludes 11291 (48%) of those, leaving 12417. We
have run configurations without this mass cut, and the effects on the GWB are always negligible.

There is very small population of MBH ‘merger’ events which occur during close encounters (but
not true mergers) of two host-halos. During the encounter, the halo-finder might associate the two con-
stituent halos as one, causing the MBHs to merge spuriously due to the repositioning algorithm. These

∗These, self-consistently derived mass accretion rates (Ṁ) are used in our implementation of gas drag (dis-
cussed in §1.3.3) as a way of measuring the local gas density.
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forced mergers are rare and, we believe, have no noticeable effect on the overall population of thousands
of mergers. They are certainly negligible in the overall MBH-Halo statistical correlations which are well
reproduced in the Illustris simulations (Sijacki et al. 2015).

1.2.2 Merger Host Galaxies

To identify the environments which produce the dynamical friction, stellar scattering, and viscous
drag which we are interested in, we identify the host galaxies of each MBH involved in the merger in the
snapshot preceding it, in addition to the single galaxy which contains the ‘binary’ (at this point a single,
remnant MBH) in the snapshot immediately following the merger event. 644 mergers (3%) are excluded
because they don’t have an associated galaxy before or after the merger. To ensure that each host galaxy
is sufficiently well resolved (especially important for calculating density profiles), we require that a suffi-
cient number of each particle type constitute the galaxy. Following Blecha et al. (2016) we use a fiducial
cut of 80 and 300 star and DM particles respectively, and additionally require 80 gas cells. This excludes
54 of the remaining binaries. We emphasize here that this remnant host galaxy, as it is in the snapshot fol-
lowing the Illustris ‘merger’ event, forms the environment in which we model the MBHB merger process.
In the future, we plan to upgrade our implementation to take full advantage of the dynamically evolving
merger environment: including information from both galaxies as they merge, and the evolving remnant
galaxy once it forms.

We construct spherically averaged, radial density profiles for each host galaxy and each particle/cell
type (star, DM, gas). Because the particle smoothing lengths are larger than the MBHB separations of
interest, we extrapolate the galaxy density profiles based on fits to the inner regions. Our fits use the in-
nermost eight radial bins that have at least four particles in them. Out of the valid binaries, 347 (1%) are
excluded because fits could not be constructed—generally because the particles aren’t distributed over
the required eight bins. Successful fits typical use ∼ 100 particles, with gas cell sizes ∼ 102 pc and SPH
smoothing lengths for stars and DM ∼ 103 pc.

Density profiles for a sample Illustris MBHB host galaxy are shown in Fig. 1.1. The left panels show
the binned density profiles for each particle type (top), and the number of particles in each bin (bottom).
The semi-transparent points are those with less than the requisite four particles in them. The right panels
show zoom-ins for each particle type, where the shaded regions indicate the eight bins used for calculat-
ing fits. The resulting interpolants are overplotted, with the power-law index indicated. While the four
particles per bin, and eight inner bins generally provide for robust fits, we impose a maximum power-law
index of −0.1—i.e. that densities are at least gently increasing, and a minimum index of −3—to ensure
that the mass enclosed is convergent. Using these densities we calculate all additional galaxy profiles re-
quired for the hardening prescriptions (§1.3), e.g. velocities, binding energies, etc. When calculating pro-
files using our fiducial parameters, 2286 binaries (10%) are excluded when calculating the distribution
functions (§1.3.2), usually due to significant nonmonotonicities in the radial density profile which are in-
compatible with the model assumptions. Overall, after all selection cuts, 9270/23708 (39%) of the initial
Illustris ‘merger’ events are analyzed in our simulations.

Figure 1.2 shows the properties of MBHB passing our selection cuts, grouped my mass ratio. Mass
ratio (upper-left panel) is strongly anti-correlated with total mass (upper-right) due to both selection
effects (e.g. at total masses just above the minimum mass, the mass ratio must be near unity), and as-
trophysical ones (e.g. the most massive MBH, in large, central galaxies tend to merge more often with
the lower mass MBH in small satellite galaxies). Binary separations (lower-left) are set by the smooth-
ing length of MBH particles in Illustris. Once two MBH particles come within a smoothing length of one
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Figure 1.1: Density profiles from a sample Illustris MBHB host galaxy. Binned densities for each par-
ticle type are shown (upper-left) along with the number of particles/cells in each (bottom-left). Semi-
transparent points are bins with less than four particles—the number required for consideration in calcu-
lating fits. Zoom-ins are also shown separately for each particle type (right), with the eight inner-most
bins with at least four particles shown in the shaded region. Those bins were used to calculate fits, which
are overplotted. The resulting power-law indices used to extrapolate inwards are also shown. Any galaxy
without enough (eight) bins is excluded from our sample, in addition to the MBHB it contains. This was
the case for roughly 1% of our initial population, almost entirely containing MBH very near our BH mass
threshold (106 M⊙).

another, Illustris considers them a ‘merger’ event—which corresponds to the ‘formation’ (lower-right) of a
binary in the simulations of this study.
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Figure 1.2: Properties of the Massive Black Hole Binaries from the Illustris population passing our selec-
tion cuts. After selecting for MBH masses M > 106 M⊙, and requiring the binary host galaxies to have
sufficiently well resolved density profiles, 9270 of 23708 (39%) systems remain. Distributions of mass ra-
tio, total mass, initial binary separation (determined by MBH particle smoothing lengths), and formation
redshifts (determined as the time at which particles come within a smoothing length of one-another) are
shown. The different lines (colors) correspond to different mass ratios which are strongly anti-correlated
with total mass.

1.3 Binary Hardening Models

Black-hole encounters from Illustris determine the initial conditions for the binary population which
are then evolved in our merger simulations. Throughout the ‘hardening’ process, where the binaries slowly
coalesce over millions to billions of years, we assume uniformly circular orbits. In our models, we use infor-
mation from the MBHB host galaxies to implement four distinct hardening mechanisms (Begelman, Bland-
ford & Rees 1980, hereafter BBR80): dynamical friction (DF), stellar scattering in the ‘loss-cone’ regime
(LC)∗, viscous drag (VD) from a circumbinary gaseous-disk, and gravitational-wave radiation (GW).

1.3.1 Dynamical Friction

Dynamical friction is the integrated effect of many weak and long-range scattering events, on a grav-
itating object moving with a relative velocity through a massive background. The velocity differential
causes an asymmetry which allows energy to be transferred from the motion of the massive object to a ki-
netic thermalization of the background population. In the case of galaxy mergers, dynamical friction is the
primary mechanism of dissipating the initial orbital energy to facilitate coalescence of the galaxies, gener-
ally on timescales comparable to the local dynamical time (∼ 108 yr). BH present in the parent galaxies
will tend to ‘sink’ towards each other in the same manner (BBR80) due to the background of stars, gas

∗Loss-cone scattering and dynamical friction are different regimes of the same phenomenon, we separate them
based on implementation.
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Figure 1.3: Stellar half-mass radii (R⋆,1/2) and total mass within 2 · R⋆,1/2 for all Illustris remnant host
galaxies. Values for each galaxy are colored by their dynamical times, calculated using Eq. 1.7, which are
used for the ‘enhanced’ DF masses. The histogram in the upper right shows the distribution of dynamical
times. Galaxy masses and radii are peaked at about 1011 M⊙ and 10 kpc respectively, with corresponding
dynamical times around 100 Myr

and dark-matter (DM). For a detailed review of dynamical friction in MBH systems, see Antonini & Mer-
ritt (2012).

The change in velocity of a massive object due to a single encounter with a background particle at
a fixed relative velocity v and impact parameter b is derived (e.g. Binney & Tremaine 1987) following the
treatment of Chandrasekhar (1942, 1943) by averaging the encounters over all possible angles to find,

∆v = −2v
m

M + m

1
1 + (b/b0)2 , (1.3)

where the characteristic (or ‘minimum’) impact parameter b0 ≡ G(M + m)/v2, for a primary object of
mass M , in a background of bodies with masses m. The net deceleration on a primary mass is then found
by integrating over distributions of stellar velocity (assumed to be isotropic and Maxwellian) and impact
parameters (out to some maximum effective distance bmax) which yields,

dv

dt
= −2πG2(M + m)ρ

v2 ln
[
1 + (bmax/b0)2

]
, (1.4)

for a background of mass density ρ. The impact parameters are usually replaced with a constant—the
‘Coulomb Logarithm’, ln Λ ≡ ln

(
bmax

b0

)
≈ 1

2 ln
(
1 + Λ2)

, such that,

dv

dt
= −2πG2(M + m)ρ

v2 ln Λ. (1.5)
In the implementation of Eq. 1.5, we use spherically averaged density profiles from the Illustris, rem-

nant host galaxies. Modeling a ‘bare’, secondary MBH moving under DF through these remnants would
clearly drastically underestimate the effective mass—which, at early times is the MBH secondary in addi-
tion to its host galaxy. Over time, the secondary galaxy will be stripped by tidal forces and drag, eventu-
ally leaving behind the secondary MBH with only a dense core of stars and gas directly within its sphere
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of influence. We model this mass ‘enhancement’ by assuming that the effective DF mass is initially the
sum of the MBH mass (M2), and that of its host galaxy (M2,host), decreasing as a power-law over a dy-
namical time τdyn, until only the MBH mass is left, i.e.,

MDF = M2

(
M2 + M2,host

M2

)1−t/τdyn

. (1.6)

We calculate the dynamical time using a mass and radius from the remnant host galaxy. Specifically, we
use twice the stellar half-mass radius 2R⋆,1/2, and define M2,host as the total mass within that radius, i.e.,

τdyn =
[

4π (2R⋆,1/2)3

3GM2,host

]1/2

. (1.7)

The galaxy properties and derived dynamical times for all MBHB host galaxies we consider are
shown in Fig. 1.3. Galaxy masses and radii are peaked at about 1011 M⊙ and 10 kpc respectively, with cor-
responding dynamical times around 100 Myr. For comparison, we also perform simulations using a fixed
dynamical time of 1 Gyr for all galaxies, i.e., less-efficient stripping of the secondary galaxy.

1.3.1.1 Impact Parameters and Explicit Calculations

We have explored calculating the Coulomb logarithm explicitly, following BBR80 for the maximum
impact parameter such that,

bmax(r) =


Rs Rs < r,

(r/Rb)3/2
Rs Rh < r < Rs,

r Rh r < Rh.

(1.8)

This, effective maximum impact parameter is a function of binary separation∗ r—to account for the vary-
ing population of stars available for scattering and varying effectiveness of encounters. Eq. 1.8 also de-
pends on the characteristic stellar radius Rs (‘rc’ in BBR80), radius at which the binary becomes gravita-
tionally bound, Rb = [M/ (Nm⋆)]1/3

Rs, and radius at which the binary becomes ‘hard’, Rh ≡ (Rb/Rs)3
Rs.

Not only is this formalism complex, but it often produces unphysical results. For example, with this
prescription the ‘maximum’ impact parameter not infrequently becomes less than the ‘minimum’, or larger
than the distances which interact in the characteristic timescales. After imposing a minimum impact pa-
rameter ratio of bmax/b0 ≥ 10 (i.e. ln Λ ≥ 2.3), the results we obtained are generally consistent with using a
constant coulomb-logarithm, with negligible effects on the resulting merger rates and GW background. We
have also implemented an explicit integration over stellar distribution functions (see: §1.3.2), and found
the results to again be entirely consistent with Eq. 1.5 which is both computationally faster and numeri-
cally smoother. We believe the explicit impact parameter calculation is only valuable as a heuristic, and
instead we use ln Λ = 15, consistent with detailed calculations (e.g. Antonini & Merritt 2012). Similarly,
in the results we present, we take the local stellar density as that given by spherically symmetric radial
density profiles around the galactic center instead of first determining, then marginalizing over, the stellar
distribution functions.

1.3.1.2 Applicable Regimes

There is a critical separation at which the back-reaction of the decelerating MBH notably modifies
the stellar distribution, and the dynamical friction formalism is no longer appropriate. Beyond this radius,
the finite number of stars in the accessible region of parameter space to interact with the MBH(B)—the

∗Note that we use the term ‘binary separation’ loosely, in describing the separation of the two MBH even be-
fore they are gravitational bound.
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Figure 1.4: Dynamical Friction (DF) hardening timescales for 50% of our MBHB around the median, un-
der a variety of implementations. Cases in which a ‘bare’ secondary MBH migrates through the remnant
host galaxy is compared to ones where the effective mass is enhanced to the secondary’s host galaxy, de-
creasing as a power-law over the course of a dynamical time (‘Enh’; see Eq. 1.6). The dynamical time is
calculated using twice the ‘Stellar’ half-mass radius (see Eq. 1.7) shown in blue, or using a fixed 1 ‘Gyr’
timescale shown in green. Allowing gaseous DF to continue below the attenuation radius Rlc (‘Gas Con-
tinues’: darker regions, dotted lines) is compared to cutting off the gas along with stars and DM (‘Gas
Cutoff’: lighter regions, dashed lines). Fstall is the fraction of mergers with mass ratio µ > 0.1, remaining
at separations r > 102 pc, at redshift zero.

‘loss-cone’, (LC; see, Merritt 2013)—must be considered explicitly, discussed more thoroughly in §1.3.2.
The ‘loss-cone’ radius can be approximated as (BBR80),

Rlc =
(m⋆

M

)1/4
(

Rb

Rs

)9/4

Rs. (1.9)

Stars and DM are effectively collisionless, so they can only refill the LC on a slow, diffusive scattering
timescale. Gas, on the other hand, is viscous and supported thermally and by turbulent motion which
can equilibrate it on shorter timescales. In our fiducial model, we assume that for separations r < Rlc

the dynamical friction due to stars and DM is attenuated to low values, but that of gas continues down to
smaller separations. We set the inner edge of gaseous DF based on the formation of a (circumbinary) ac-
cretion disk on small scales (discussed in §1.3.3). The attenuation prescription given by BBR80 increases
the dynamical friction timescales by a factor,

fDF,LC =
(

m

M•

)7/4

N⋆

(
Rb

Rs

)27/4 (
Rlc

r

)
, (1.10)

where N⋆ = 1
M⋆

∫ r

0 4πr′2ρ⋆dr′, is the number of stars available to interact with the binary. For all intents
and purposes this negates the effectiveness of DF for r ≲ Rlc, such that without other hardening mecha-
nisms (which become important at smaller scales), no MBHB would coalesce within a Hubble time.
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1.3.1.3 DF Hardening Rates

The resulting hardening timescales, τh = a/ (da/dt), for our different DF implementations are shown
in Fig. 1.4. We show evolution for ‘bare’ MBH secondaries (red), in addition to effective masses enhanced
(‘enh’) by the secondary’s host galaxy for a dynamical time calculated using twice the ‘stellar’ half-mass
radii (blue), or with a fixed ‘Gyr’ time scale (green). In each case we also compare between letting gas-DF
continue below Rlc (‘Gas Continues’: darker colors, dotted lines), versus attenuating gas along with stars
and DM (‘Gas Cutoff’: lighter colors, dashed lines). As a metric of the varying outcomes, we calculate
the fraction of ‘stalled’ major-mergers Fstall, defined as the number of major mergers (mass-ratios µ ≡
M2/M1 > 0.1; which are 6040 out of the full sample of 9270, i.e. ∼ 65%) remaining at separations larger
than 100 pc at redshift zero, divided by the total number of major-mergers. Attenuation of the DF begins
below 100 pc, so Fstall are unaffected by whether the gas DF is also cutoff.

For r ≳ 100 pc, where the density of stars and especially dark matter dominate that of gas, the hard-
ening rates are the same with or without a separate treatment of gas. Hardening differs significantly how-
ever, between the ‘bare’ and enhanced models—with the latter hardening more than an order of magni-
tude faster at the largest separations∗ (∼ 104 pc). After a dynamical time, the ‘stellar’ enhancement runs
out and the hardening rate approaches that of a bare MBH secondary by ∼ 103 pc. Still, the enhanced
mass over this time leads to a decrease in the fraction of stalled binaries from ∼ 63% to ∼ 37%. When the
mass enhancement persists for a gigayear—about a factor of ten longer than typical dynamical times—a
large fraction of MBHB are able to reach parsec-scale separations before tidal stripping becomes complete,
leading to only ∼ 7% of major-mergers stalling at large separations. The particular fraction of stalled sys-
tems is fairly sensitive to the total mass and mass ratio cutoff, which we return to in §1.4.3.

Previous studies (e.g. Ravi et al. 2014) have assumed that DF is very effective at bringing MBHB
into the dynamically ‘hard’ regime (i.e. instantly in their models), after which stellar interactions must be
calculated explicitly to model the remaining evolution. For comparison, in our results we also include a
‘Force-Hard’ model in which we assume that all binaries reach the hard regime (r = Rh) over the course of
a dynamical time†.

It has long been suggested that MBHB could stall at kiloparsec-scale separations (e.g. Yu 2002), but
only recently has this effect been incorporated into population hardening models and studied specifically
(e.g. McWilliams, Ostriker & Pretorius 2014; Kulier et al. 2015). By better understanding the timescales
over which stalled systems could be observable, we can use observed dual-AGN to constrain the hardening
process and the event rates of MBHB encounters.

1.3.2 Stellar Loss-Cone Scattering

The population of stars that are able to interact (scatter) with the MBHB are said to occupy the
‘loss-cone’ (LC, Merritt 2013), so-named because it describes a conical region in parameter space. When
stars are scattered out of the LC faster than they can be replenished, the LC becomes depleted and the
dynamical friction description, which considers a relatively static background, becomes inconsistent. One
approach to compensate for this is to add an ‘attenuation’ factor, as described in the previous section
(§1.3.1). Physically, a steady state must be dynamically realized in which stars are diffused into the outer
edges of the LC via two-body relaxation at the same rate at which stars are scattering out by the central

∗Recall that binary separations are initialized to the MBH particle smoothing lengths, distributed between
about 103 and 104 pc, so the total number of systems being plotted decreases over the same range.

†calculated using the ‘Stellar’ prescription: twice the stellar half mass radius, and the mass within it.
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MBH(B). The largest uncertainty in the MBHB merger process is likely understanding the nature of this
equilibrium state, and how it is affected by realistic galaxy-merger environments.

The loss-cone has been extensively explored in both the context of MBH binary hardening, as well
as in tidal-disruption events (TDE). The two cases are almost identical, differing primarily in that for
TDE calculations, only impact parameters small enough to cause disruptions are of interest—while for
binary hardening, weaker scattering events are still able to extract energy from the MBH or MBHB. For
binary hardening, there is an additional ambiguity in two subtly distinct regimes: first, where stars scatter
with individual BHs, decelerating them analogously to the case of dynamical friction (but requiring the
LC population to be considered explicitly). Second, for a truly bound binary, stars can interact with the
combined system—in a three-body scattering—and extract energy from the binary pair together. In our
prescriptions we do not distinguish between these cases, considering them to be a spectrum of the same
phenomenon instead.

We use the model for LC scattering given by Magorrian & Tremaine (1999), corresponding to a sin-
gle central object in a spherical (isotropic) background of stars. We adapt this prescription simply by mod-
ifying the radius of interaction to be appropriate for scattering with a binary instead of being tidally dis-
rupted by a single MBH. This implementation is presented in pedagogical detail in Appendix §A. Scat-
tering rates are calculated corresponding to both a ‘full’ LC (Eq. 1.24), one in which it is assumed that
the parameter space of stars is replenished as fast as it is scattered; in addition to a ‘steady-state’ LC
(Eq. 1.25), in which diffusive two-body scattering sets the rate at which stars are available to interact with
the binary.

The interaction rates (fluxes) of stars scattering against all MBHB in our sample are shown in the
upper panel of Fig. 1.5 for both full (red, Eq. 1.24) and equilibrium (blue, Eq. 1.25) loss-cone configu-
rations. The interaction rates for full LC tend to be about six orders of magnitude higher than equilib-
rium configurations. The resulting binary hardening timescales are shown in the lower panel of Fig. 1.5—
reaching four orders of magnitude above and below a Hubble time. Clearly, whether the LC is in the rela-
tively low equilibrium state or is more effectively refilled has huge consequences for the number of binaries
which are able to coalesce within a Hubble time.

Many factors exist which may contribute to quickly refilling the loss cone. In general, any form of
asymmetry in the potential will act as an additional perturber—increasing the thermalization of stellar
orbits. The presence of a MBHB is premised on there having been a recent galaxy merger—implying that
significant asymmetries and aspherical morphologies may exist. Even ignoring galaxy mergers, galaxies
themselves are triaxial (e.g Illingworth 1977; Leach 1981), many have bars (e.g. Sellwood & Wilkinson
1993), and in star forming galaxies there are likely large, dense molecular clouds (e.g. Young & Scoville
1991) which could act as perturbers. Finally, because binary lifetimes tend to be on the order of the Hub-
ble time while galaxies typically undergo numerous merger events (e.g. Rodriguez-Gomez et al. 2015), sub-
sequent merger events can lead to triple MBH systems (see: §1.4.4) which could be very effective at stir-
ring the stellar distribution. While there is some evidence that for galaxy-merger remnants the hardening
rate can be nearly that of a ‘full’ LC (e.g. Khan, Just & Merritt 2011), the community seems to be far
from a consensus (e.g. Vasiliev, Antonini & Merritt 2014), and a purely numerical solution to the LC prob-
lem is currently still unfeasible.

In the future, we plan on incorporating the effects of triaxiality and tertiary MBH to explore self-
consistent LC refilling. In our current models, we introduce an arbitrary dimensionless parameter—the
logarithmic ‘refilling fraction’ Frefill (in practice, but not requisitely, between [0.0, 1.0])—to logarithmically
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Figure 1.5: Scattering rates and hardening timescales for full (red) and steady-state (blue) loss-cones.
The bands represent 68% and 95% of the population around the median. The difference between the two
extremes of LC states is a stark six orders of magnitude, illustrating how strong of an effect the LC can
have on MBHB mergers. We use a simple, single parameter prescription to describe the state of the LC:
the fraction, in log-space, between steady-state and full, Frefill (see, Eq. 1.11).

interpolate between the fluxes of steady-state (F eq
lc ) and full LC (F full

lc ), i.e.,

Flc = F eq
lc ·

(
F full

lc

F eq
lc

)Frefill

. (1.11)

1.3.3 Viscous Hardening by a Circumbinary Disk

The density of gas accreting onto MBH can increase significantly at separations near the accretion or
Bondi radius, Rb ≡ GM•/c2

s, where the sound-crossing time is comparable to the dynamical time. The na-
ture of accretion flows onto MBH near and within the Bondi-radius are highly uncertain, as observations
of these regions are currently rarely resolved (e.g. Wong et al. 2011). If a high density, circumbinary disk
is able to form, the viscous drag (VD) can be a significant contribution to hardening the binary at separa-
tions just beyond the GW-dominated regime (BBR80, Gould & Rix 2000; Escala et al. 2005b). Galaxy
mergers are effective at driving significant masses of gas to the central regions of post-merger galaxies
(Barnes & Hernquist 1992), enhancing this possibility.

We implement a prescription for VD due to a circumbinary accretion disk following Haiman, Kocsis
& Menou (2009, hereafter HKM09) based on the classic thin-disk solution of Shakura & Sunyaev (1973),
broken down into three, physically distinct regions (Shapiro & Teukolsky 1986). These regions are based
on the dominant pressure (radiation vs. thermal) and opacity (Thomson vs. free-free) contributions, such
that the regions are defined as,

1) r < r12, radiation pressure and Thomson-scattering opacity dominated;
2) r12 < r < r23, thermal pressure and Thomson-scattering opacity dominated;
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Figure 1.6: Accretion rates at the time of binary formation for all MBHB in our analysis. Values are
measured as a fraction of the Eddington accretion rate, ṀEdd ≡ LEdd/εradc2, where we use εrad =
0.1. Recall that in Illustris MBH merge when they come within a smoothing length of one another—
corresponding to the formation of a binary in our models. The accretion rates from Illustris are those of
the resulting remnant MBH, and are limited to Eddington ratios of unity. The upper panel shows the dis-
tribution of accretion rates (bars) and cumulative number (line), which are strongly biased towards near-
Eddington values. The lower panel shows the cumulative distribution of accretion rates above each value
(note the different x-axis scaling). The median Eddington ratio of 0.75 is overplotted (grey, dashed line).

3) r23 < r, thermal pressure and free-free opacity dominated.

Recall that in Illustris, ‘mergers’ occur when MBH particles come nearer than a particle smoothing
length, after which the MBH are combined into a single, remnant MBH. We track these remnant par-
ticles and use their accretion rates (Ṁ) to calibrate the circumbinary disk’s gas density. The distribu-
tion of Eddington ratios (Ṁ/ṀEdd) for these remnants, at the time of their formation, are presented in
Fig. 1.6, showing a clear bias towards near-Eddington accretion rates. MBH remnants tend to have en-
hanced accretion rates for a few gigayear after merger, and have higher average accretion than general
BHs (Blecha et al. 2016). In Illustris, MBH accretion (and thus growth in mass) is always limited to the
Eddington accretion rate. We introduce a dimensionless parameter fEdd to modulate those accretion rates,
i.e., Ṁ = Min

[
Ṁill, fEddṀEdd

]
.

Otherwise, in the formalism of HKM09, we use their fiducial parameter values∗ and assume an α-disk
(i.e. the viscosity depends on total pressure, not just thermal pressure as in a so-called β-disk). The outer
disk boundary is determined by instability due to self-gravity—measured as some factor times the radius,
rQ, at which the Toomre parameter reaches unity, i.e. RSG = λsg rQ. In our fiducial model, λsg = 1, and
variations in this parameter have little effect on the overall population of binaries. After marginalizing
over all systems, changes to the different viscous-disk parameters tend to be largely degenerate: shifting

∗Mean mass per electron, µe = 0.875; viscosity parameter α = 0.3; radiative efficiency, εrad = 0.1; temperature-
opacity constant, fT = 0.75; and disk-gap size, λgap = 1.0 (‘λ’ in HKM09).
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Figure 1.7: Fraction of binaries in each circumbinary disk region as a function of radius. Radii are given
both physical units (upper panel) and Schwarzschild radii (Rs, lower panel), the latter highlighting the
intrinsic scalings. Region-4 are locations in the disk which are unstable to self-gravity (‘SG’), defined using
the Toomre parameter for each of Region-2 and Region-3.

the distribution of hardening timescales and the GWB amplitude in similar manners.
VD hardening timescales tend to decrease with decreasing binary separations. They thus tend to be

dominated by Region-3—at larger separations. For near-Eddington accretion rates, however, Region-2 and
especially Region-3 tend to be self-gravity unstable, fragmenting the disk and eliminating VD altogether.
For this reason, when high accretion rate systems have dynamically important disks, they tend to be in
Region-1. In these cases, Region-1 extends to large enough radii such that for most masses of interest, GW
emission will only become significant well within that region of the disk. Lower accretion rate systems are
stable out to much larger radii, allowing many binaries to stably evolve through Region-2 and Region-3.
These regions also cutoff at smaller separations, meaning that GW emission can become significant outside
of Region-1.

Decreased disk densities mean less drag, but at the same time sufficiently high densities lead to in-
stability, making the connection between accretion rate and VD-effectiveness non-monotonic. This is en-
hanced by gaseous DF, with an inner cutoff radius determined by the SG radius (see §1.3.1.2). In other
words, gaseous DF is allowed to continue down to smaller radii when the outer disk regions become SG un-
stable. We impose an additional, absolute upper-limit to the SG instability radius of RSG,Max = 10 pc, i.e.
RSG = Min [λsg rQ, RSG,Max], to keep the outer-edge of disks physically reasonable.

Fig. 1.7 shows the fraction of Illustris binaries in the different regions of the disk, for our fiducial
model. Only a fraction of MBHB spend time in Region-2 and Region-3 disks, and even that is only for a
small region of log-radius space. While almost all systems do enter Region-1 by about 103 Rs, GW harden-
ing has, in general, also become significant by these same scales.

In addition to the spatially-distinct disk regions, different types of migration occur depending on
whether the disk or the secondary-MBH is dynamically dominant (analogous to the distinction between
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Figure 1.8: Hardening timescales due to circumbinary disk drag for binaries grouped by total mass and
mass ratio. Light and heavy MBHB are separated by total masses below and above 109 M⊙ respectively;
and minor and major based on mass ratios (µ) below and above 1/4. The median and surrounding 50%
intervals for all MBHB systems are shown in grey, showing that ‘light’ systems dominate the bulk of the
binary population. Heavy, and especially heavy-major, systems tend to harden orders of magnitude faster
than lighter ones. The light population (especially major) exhibits nonmonotonicities at intermediate sep-
arations (∼ 10−3 – 10−1 pc) indicative of changes between disk regions. Heavy systems (especially minor),
on the other hand, show much smoother hardening rates consistent with moving through primarily Region-
1.

‘planet-dominated’ and ‘disk-dominated’, Type II migration in planetary disks—see, HKM09). If disk-
dominated, the system hardens on the viscous timescale τv, whereas if the secondary is dominant—as is
the typical case in our simulations, the timescale is slowed by a factor related to the degree of secondary-
dominance.

The resulting hardening timescales due to VD from a circumbinary disk are shown in Fig. 1.8. The
more massive binaries (‘heavy’, M > 109M⊙) have orders of magnitude shorter VD hardening times,
but are quite rare. The overall trend (grey, cross-hatched) follows the less massive (‘light’) systems. The
changes in slope of the ‘light’ populations (especially ‘Major’, µ ≡ M2/M1 > 1/4) at separations larger
than 10−3 pc are due to transitions in disk regions. The ‘heavy’ systems tend to have SG unstable Re-
gions 2 & 3, and thus harden more smoothly, predominantly due to Region-1.

Fig. 1.9 compares median hardening rates in simulations including VD (solid) with those without a
disk (dashed). In the former case, the purely VD hardening rates are also shown (dotted)—with the max-
imum disk cutoff RSG,Max, clearly apparent at 10 pc. Different dynamical friction prescriptions are shown,
with mass enhancements over dynamical times calculated using the ‘stellar’ method in blue, and fixed
1 Gyr timescales in red (see §1.3.1). The upper panel shows a moderately refilled loss cone (Frefill = 0.6),
while in the lower panel the LC is always full (Frefill = 1.0). The effects of VD are clearly apparent be-
low a few 10−2 pc in all models, and up to RSG,Max = 10 pc when Frefill = 0.6. In the Frefill = 1.0 case,
LC hardening dominates to much smaller separations, making the VD effects minimal for the overall hard-
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ening rates. This is echoed in the changes in coalescing fractions∗ between the VD and No-VD cases: for
Frefill = 0.6, VD increases Fcoal by ∼ 10%, while for Frefill = 1.0, it is only increased by ∼ 2%.

The circumbinary disk is SG unstable for many systems, and thus the median hardening rates includ-
ing VD are often intermediate between the purely VD timescales and simulations without VD at all (e.g.,
seen between ∼ 5 × 10−3 – 1 pc in the upper panel of Fig. 1.9). At smaller separations (≲ 10−3 pc), where
LC is almost always subdominant to VD and/or GW hardening, the VD decreases the median hardening
timescales by between a factor of a few, and an order of magnitude. Notably, Fig. 1.9 shows that the scal-
ing of hardening rate with separation below about 10−3 pc is very similar between that of GW (which is
dominant in the No-VD case) and VD. At these small scales, ≳ 80% of our binaries are in disk Region-1
(see Fig. 1.7), which has a viscous hardening rate, τv,1 ∝ r7/2 (HKM09, Eq. 21a), compared to a very sim-
ilar scaling for GW, τgw ∝ r4 (see §1.3.4). Thus, even when VD dominates hardening into the mpc-scale
regime, we don’t expect the GWB spectrum from binaries in Region-1 to deviate significantly from the
canonical −2/3 power-law.

Differences in median hardening timescales, solely due to viscous drag, are compared for a variety
of VD parameters in Fig. 1.10. A simulation with our fiducial disk parameters is shown in dashed-black,
and each color shows variations in a different parameter. Decreasing the viscosity of the disk (α, green)
amounts to a proportional increase in the hardening timescale, and decrease in the coalescing fractions
(Fcoal). Decreasing the maximum disk radius (RSG,Max, red) decreases the overall effectiveness of VD,
but because gaseous DF continues in its place, the coalescing fraction remains unchanged. While RSG,Max

changes the maximum disk radius, λsg changes the radii at which Region-2 & Region-3 become SG-unstable
directly (i.e. even well within the maximum cutoff radius). Increasing λsg by a factor of four (blue) signifi-
cantly increases the number of MBHB with SG-stable Region-2 † between ∼ 10−2 & 10−1 pc, increasing the
overall coalescing fraction.

Decreasing the accretion rates (fEdd, purple), and thus disk densities, increases the hardening timescales
similarly to changing the viscosity (green). At the same time, significantly more systems have stable outer
disks. This has the effect of increasing coalescing fractions noticeably, despite the increased median hard-
ening timescales. In addition to increased outer-disk stability, the transition between disk regions are also
inwards. A large number of MBHB at small separations (≲ 10−3 pc) remain in disk Region-2 instead
of transitioning to Region-1. This softens the scaling of hardening rate with separation to, τv,2 ∝ r7/5

(HKM09, Eq. 21b), which differs much more significantly from purely GW-driven evolution.

∗Fcoal, the fraction of systems with mass ratio µ > 0.1 which coalesce by z = 0.
†See the transition in Fig. 1.7 between Region-2 (light-blue) & Region-4 (grey) at ∼ 10−2 pc.
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Figure 1.9: Median Hardening timescales with and without drag from a circumbinary Viscous Disk (VD)
for different hardening models. Different LC refilling parameters (Fcoal = 0.6, upper; and Fcoal = 1.0,
lower) are compared against DF models (‘Enh-Stellar’, blue; ‘Enh-Gyr’, red). Each line type shows a dif-
ferent hardening rate: viscous drag only (dotted), and cumulative hardening rates with VD (solid) and
without VD (dashed). With Frefill = 0.6, VD effects are apparent up to the disk cutoff, RSG,Max = 10 pc,
whereas for Frefill = 1.0, LC scattering dominates down to ∼ 10−2 pc. Similarly, the presence of a circumbi-
nary disk has a much more pronounced effect on the fraction of high mass-ratio (µ > 0.1) systems which
coalesce by redshift zero (Fcoal), which are indicated in the legends. At very low separations the cumula-
tive (with-VD) hardening rate is very nearly the purely VD rate, showing its importance down to very
small scales. At intermediate separations the ‘cumulative, VD’ rate is intermediate between the ‘cumula-
tive, No-VD’ and the ‘VD only’ model, showing that the disk is only present in some fraction of systems
at those scales.
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Figure 1.10: Median Hardening timescales comparing our fiducial Viscous Disk (VD) parameters (black,
dashed) with other configurations. The radius at which the disk becomes Self-Gravity (SG) unstable is
RSG = Min [λsg rQ, RSG,Max], where rQ is the radius at which the Toomre parameter reaches unity. λsg

scales the SG-unstable radius, while RSG,Max is a maximum cutoff radius. α is the standard disk viscosity
parameter, and fEdd limits the maximum accretion rate, i.e. Ṁ = Min

[
Ṁill, fEddṀEdd

]
. While this variety

of VD parameters produces hardening rates varying by two orders of magnitude, the resulting changes to
the coalescing fraction Fcoal is fairly moderate as VD is often subdominant to LC scattering at larger radii
and to GW emission at smaller radii. Effects on Fcoal can be counterintuitive, for example decreasing the
accretion rate (purple line) increases the median hardening timescale, but increases the coalescing fraction
because the disk becomes SG-stable for a larger fraction of binaries. Each model uses Frefill = 0.6, and the
‘Enh-Stellar’ DF.
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1.3.4 Gravitational-Wave Emission

Gravitational wave radiation will always be the dominant dissipation mechanism at the smallest bi-
nary separations—within hundreds to thousands of Schwarzschild radii. GW hardening depends only on
the constituent masses (M1 & M2) of the MBHB, their separation, and the system’s eccentricity. The
hardening rate can be expressed as (Peters 1964),

da

dt
= −64 G3

5 c5
M1 M2 (M1 + M2)

a3

(
1 + 73

24 e2 + 37
96 e4)

(1 − e2)7/2 , (1.12)

where a is the semi-major axis of the binary and e is the eccentricity. In our treatment we assume that the
eccentricities of all MBHB are uniformly zero, in which case, Eq. 1.12 can easily be integrated to find the
time to merge,

tGW = 5c5

64G3
a4

0 − R4
crit

M1M2M
,

≈ 1010 yr
(

a0

0.01 pc

)4 (
M

2 × 107M⊙

)−3 (
2 + µ + 1/µ

4

)
,

(1.13)

for a total mass M = M1 + M2, mass ratio µ ≡ M2/M1, initial separation a0 and critical separation
Rcrit. In practice, we assume that the GW signal from binaries terminates at the Inner-most Stable Circu-
lar Orbit (ISCO), at which point the binary ‘coalesces’; i.e. Rcrit = Risco(J = 0.0) = 3Rs. For an equal
mass binary, with median Illustris MBH masses∗ of about 107 M⊙, the binary needs to come to a separa-
tion of ∼ 0.01 pc (∼ 104 Rs), to merge within a Hubble time. Characteristic timescales and separations
for (purely) GW-driven inspirals across total mass and mass ratio parameter space are plotted in Fig. 1 of
Appendix A. While the absolute most-massive MBHB can merge purely from GW emission starting from
a parsec, the bulk of physical systems, at 106 − 108 M⊙, must be driven by environmental effects to separa-
tions on the order of 10−3 − 10−2 pc (∼ 500 − 5000 Rs) to coalesce by redshift zero.

1.4 Results

The hardening timescales for all Massive Black Hole Binaries (MBHB) are plotted against binary
separation in Fig. 1.11, broken down by hardening mechanism. This is a representative model with a mod-
erate loss-cone (LC) refilling fraction Frefill = 0.6 (see §1.3.2), using the ‘Enh-Stellar’ DF (see §1.3.1). This
is the fiducial model for which we present most results, unless otherwise indicated. The inset shows the
fraction of binaries with hardening rates dominated by each mechanism. DF is most important at large
radii soon after binaries form, until LC scattering takes over at ∼ 1 pc. The median hardening timescale
remains fairly consistent at a few times 100 Myr, down to ∼ 10−2 pc at which point viscous drag (VD)
drives the bulk of systems until gravitational wave (GW) emission takes over at separations below 10−5 pc,
where the typical hardening timescale reaches years. The landscape of hardening timescales for alternative
DF prescriptions and LC refilling fractions are shown in the supplemental material (Fig. 1.24).

∗after typical selection cuts, described in §1.2.
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Figure 1.11: Binary hardening timescales versus binary separation by mechanism. Colored lines and
bands show the median and 50% intervals for Dynamical Friction (DF), Loss Cone (LC) scattering, Vis-
cous Drag (VD), and Gravitational Wave (GW) emission with the total hardening rate shown by the grey,
hatched region. The inset panel shows the fraction of binaries dominated by each mechanism. This sim-
ulation uses our fiducial parameters (e.g. Frefill = 0.6), with ‘Stellar’ DF-mass enhancement. The binary
hardening landscape is very similar to that outlined by BBR80, but the details are far more nuanced. For
a comparison with alternate models, see Fig. 1.24.

1.4.1 Binary Lifetimes

Characteristic hardening timescales are often many 100 Myr, and MBHB typically need to cross
eight or nine orders of magnitude of separation before coalescing. The resulting lifetimes of MBHB can
thus easily reach a Hubble time. Fig. 1.12 shows binary lifetimes (upper panels) and the fraction of sys-
tems which coalesce by z = 0 (lower panels) for our fiducial model. Systems are binned by total mass and
mass ratio, with the number of systems in each bin indicated. The plotted lifetimes are median values for
each bin, with the overall distribution shown in the upper-right-most panel. Grey values are outside of the
range of binned medians, and the cumulative distribution is given by the dashed line.

The lifetime distribution peaks near the median value of 29 Gyr, with only ∼ 7% of lifetimes at less
than 1 Gyr. About 20% of all MBHB in our sample coalesce before redshift zero. Systems involving the
lowest mass black holes∗ (i.e. down and left) tend towards much longer lifetimes. Overall, lifetimes and
coalescing fractions are only mildly correlated with total mass or mass ratio, when marginalizing over the
other. For systems with total masses M > 108 M⊙, the coalescing fraction increases to 23%, and for mass
ratios µ > 0.2, only slightly higher to 26%. In general, examining slightly different total-mass or mass-ratio
cutoffs has only minor effects on lifetimes and coalescing fractions.

There is a strong trend towards shorter lifetimes for simultaneously high total masses and mass ra-
tios (i.e. up and right), where median lifetimes are only a few gigayear. Considering both µ > 0.2 and at
the same time M > 108 M⊙, coalescing fractions reach 45%. The handful of MBHB which coalesce after

∗Recall we require MBH masses of at least 106 M⊙
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Figure 1.12: Binary lifetimes (upper) and coalescing fractions (lower) for our fiducial model with a mod-
erate DF and LC refilling (‘Enh-Stellar’ and Frefill = 0.6, respectively). The overall distribution of MBHB
lifetimes are shown in the upper-right-most panel, with the cumulative distribution plotted as the dashed
line. The median lifetime is ∼ 30 Gyr overall, but is significantly shorter for MBHB with either high total
masses, or nearly-equal mass ratios. For this group, the coalescing fractions are near unity. Grey bins in
the lower panel correspond to those with no binaries which coalesce by redshift zero. While systems with
the highest masses and mass ratios tend to have much shorter lifetimes, they also form at low redshifts
with less time to coalesce.
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≲ 1 Myr (∼ 0.3%) tend to involve MBH in over-massive galaxies (i.e. galaxy masses larger than expected
from MBH-host scalings) with especially concentrated stellar and/or gas distributions. There are a hand-
ful of high mass ratio, and highest total mass MBHB (M ∼ 1010 M⊙) systems showing a noticeable de-
crease in coalescing fraction. These systems form at low redshifts and don’t have time to coalesce despite
relatively short lifetimes.

Lifetimes and coalescing fractions for an always full LC (Frefill = 1.0) are shown in Fig. 1.25, in Ap-
pendix A. The median value of the lifetime distribution shifts down to ∼ 8 Gyr, with ∼ 24% under 1 Gyr.
The coalescing fractions increase similarly, and systems which are either high mass ratio (µ ≳ 0.2) or high
total mass (M ≳ 108 M⊙) generally coalesce by redshift zero. Specifically, the coalescing fractions are 50%
and 61% for all systems and those with µ > 0.2 respectively. Considering only M > 108 M⊙, fractions
increase to 54% & 99%.

Cumulative distributions of MBHB lifetimes are compared in Fig. 1.13 for a variety of LC refilling
factors (colors) and our three primary DF prescriptions (panels; see §1.3.1). The first two panels corre-
spond to prescriptions where the effective masses used in the DF calculation are the sum of the secondary
MBH mass and the mass of its host galaxy. To model stripping of the secondary galaxy during the merger
process, the effective mass decreases as a power law to the ‘bare’ MBH mass after a dynamical time. The
‘Enh-Stellar’ model (upper) calculates the dynamical time at twice the stellar half-mass radius, and the
mass there enclosed. The ‘Enh-Gyr’ model (middle), on the other hand, uses a fixed 1Gyr timescale—
almost a factor of ten longer than the median ‘stellar’-calculated value. Finally, the ‘Force-Hard’ model
(lower), uses the ‘bare’ secondary MBH mass, but the binary is forced to the hard binary regime (generally
1 – 10 pc) over the course of a dynamical time (calculated in the ‘stellar’ manner). Each color of line indi-
cates a different LC refilling fraction, from always full (Frefill = 1.0; blue) to the steady state (Frefill = 0.0;
orange). The fraction of high mass-ratio (µ > 0.1) systems which coalesce by redshift zero (Fcoal) are also
indicated in the legends.

The high mass-ratio coalescing fractions tend to vary by almost a factor of four depending on the
LC state, while the varying DF prescriptions have less than factor of two effect. Median lifetimes change
considerably, however, even between DF models, for example with Frefill = 1.0, the median lifetime for the
‘Enh-Stellar’ model is 7.7 Gyr, while that of ‘Enh-Gyr’ is only about 0.42 Gyr. Apparently, with a full LC,
DF at large scales tends to be the limiting factor for most systems. While the highest overall Fcoal occurs
for ‘Force-Hard’ & Frefill = 1.0, it takes almost an order of magnitude longer for the first ∼ 10% of systems
to coalesce than in either of the ‘Enh’ models. The effects of DF on the lifetimes of the first systems to
merge are fairly insensitive to the LC state. There are thus cases where DF can be effective at driving
some systems to coalesce very rapidly. At the same time, for the bulk of systems, after hardening past
kiloparsec scales the remaining lifetime can be quite substantial. For Frefill ≲ 0.6, neither the precise LC
refilling fraction nor the DF model make much of a difference after the first 10 – 30% of systems coalesce.
In these cases, the most massive systems with high-mass ratios coalesce fairly rapidly regardless, but the
smaller more extreme mass-ratio systems take many Hubble times to merge.

Figure 1.14 shows the distribution of formation (black) and coalescence (colored) redshifts resulting
from a variety of binary evolution models. Each panel shows a different DF prescription, and two LC re-
filling parameters are shown: always full, Frefill = 1.0 (blue), and our fiducial, moderately refilled value
of Frefill = 0.6 (green). A handful of events have been cutoff at low redshifts (z < 10−3) where the finite
volume of the Illustris simulations and cosmic variance becomes important. Median redshifts for each dis-
tribution are overplotted (dashed), along with their corresponding look-back times. The median formation
redshift for our MBHB is z = 1.25 (look-back time of ∼ 8.7 Gyr). For a full LC and the stronger DF
models, ‘Enh-Gyr’ and ‘Force-Hard’, the median coalescence redshifts are delayed to z ∼ 1.0 and z ∼ 0.9
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respectively—i.e. by about a gigayear. For our more modest, fiducial DF prescription, ‘Enh-Stellar’, even
the full LC case still delays the median coalescence redshift to z ∼ 0.6, about 3 Gyr after the peak of
MBHB formations. If the LC is only moderately refilled, the median redshifts are much lower: between
z ∼ 0.4 – 0.6.
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Figure 1.13: Cumulative distributions of binary lifetimes for a variety of DF and LC parameters. The
‘Enh-Stellar’, ‘Enh-Gyr’, and ‘Force-Hard’ DF models are shown in each panel, and the colors of lines indi-
cate the LC refilling fraction. The fraction of high mass ratio (µ > 0.1) systems coalescing by z = 0 are
given in the legend (Fcoal). Frefill is the dominant factor determining the lifetime distribution, but the DF
model significantly affects the earliest merging systems, and overall fraction of coalescing systems.
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Figure 1.14: Distribution of MBH binary formation (black) and coalescence (colored) redshifts for differ-
ent DF models (panels) and two LC refilling parameters: always full (Frefill = 1.0; blue) and our fiducial,
moderately refilled (Frefill = 0.6; green) value. The median redshift for each distribution is also plotted
(dashed), with the corresponding look-back time indicated. The minimum delay time between medians
of formation and coalescence is 1 Gyr, but up to 4.5 Gyr for our fiducial LC state and DF model (‘Enh-
Stellar’).
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1.4.2 The Gravitational Wave Background (GWB)

In §1.1 we have outlined the theoretical background for the existence of a stochastic GWB, and in-
troduced the formalism for calculating pure power-law spectra. Fig. 1.15 shows the purely power-law spec-
trum derived from Illustris MBH binaries, assuming that all systems (passing our selection cuts outlined
in §1.2) reach the GW dominated regime and evolve purely due to GW emission. Other representative
power-law predictions (see §1.1) and recent pulsar timing array (PTA) upper limits are included for com-
parison. The Illustris prediction is completely consistent with the existing literature and about 30% below
the most recent PTA upper limits. These consistencies validate the Illustris MBHB population, and the
prescriptions for the growth and evolution of individual MBH.

Almost all of the details of binary evolution are obscured in purely power-law predictions (i.e. Eq. 1.1).
In particular, they imply that all MBHB instantly reach the separations corresponding to the frequencies
of interest, and evolve purely due to GW-emission. In reality, we’ve shown that the delay time distribution
can be significant at fractions of a Hubble time. This has the important consequence that not all MBHB
coalesce (or even reach the PTA band) before redshift zero. At the same time, the environmental effects
(e.g. LC scattering) which are required to bring MBH binaries to the relevant orbital frequencies also de-
crease the time they emit in each band, attenuating the GW signal.

1.4.2.1 Full GWB Calculation Formalism

The GWB can be calculated more explicitly by decomposing the expression for GW energy radiated
per logarithmic frequency interval,

dεGW

d ln fr
= dεGW

dtr

dtr

d ln fr
, (1.14)

where the right-hand-side terms are the GW power radiated and the time spent in each frequency band.
The latter term can be further rewritten using Kepler’s law as,

dtr

d ln fr
= fr

(
dfr

dtr

)−1

= 3
2

a

da/dtr
, (1.15)

where ‘a’ is the semi-major axis of the binary. In this expression, we can identify the binary ‘hardening
time’∗, τh ≡ a/ (da/dtr). For reference, the binary separations corresponding to each GW frequency are
shown in 2. While the GW power radiated is determined solely by the binary configuration (chirp mass
and orbital frequency), the hardening time is determined by both GW emission and the sum of all environ-
mental hardening effects. For more generalized binary evolution we can write,

dεGW

d ln fr
= dεGW

d ln fr

∣∣∣∣
GW

τh

τgw
. (1.16)

This can be used to reformulate the GWB spectrum calculation† (Eq. 1.1) as,

h2
c(f) = 4π

3c2 (2πf)−4/3
∫

(GM)5/3

(1 + z)1/3
τh

τgw

d3n

dz dM dµ
dz dM dµ, (1.17)

or for discrete sources,

h2
c(f) = 4π

3c2 (2πf)−4/3 ∑
i

(GMi)5/3

Vc (1 + zi)1/3
τr,i

τgw,i
. (1.18)

Additional hardening mechanisms will decrease the hardening timescale, i.e. τh/τgw ≤ 1, decreasing the
GWB. The purely power-law expression in Eq. 1.1 (and the Illustris spectrum in Fig. 1.15) thus represents
an upper-limit to the GWB amplitude. While non-GW mechanisms are required to bring MBH binaries

∗Sometimes called the ‘residence time’ in the context of GW spectra.
†For a more complete derivation, see Kocsis & Sesana (2011).
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Figure 1.15: Stochastic Gravitational Wave Background spectrum produced by Illustris MBH binaries,
assuming purely power-law evolution with all systems efficiently reaching the GW regime. Power-law pre-
dictions from the literature (described in §1.1) are presented for comparison, along with the most recent
PTA upper limits. The power-law spectrum resulting from the Illustris simulations is very consistent with
previous results, and about 30% below the most stringent observational upper limits.

close enough to effectively emit gravitational waves, they also attenuate the amplitude of the GW back-
ground.

1.4.2.2 Fiducial Model Predictions

The stochastic Gravitational Wave Background (GWB) resulting from our fiducial model is pre-
sented in Fig. 1.16. The ‘Full’ calculation (red, solid) uses Eq. 1.18, including the effects of DF, LC scat-
tering, and VD in addition to GW emission. This is compared to a purely power-law model (blue, dashed),
calculated with Eq. 1.1 and assuming that all Illustris MBHB reach the PTA-band rapidly, and evolve
solely due to GW-emission. The amplitudes at 1 yr−1 are indicated, showing that the full hardening cal-
culation with an amplitude of Ayr−1 ≈ 3.7 × 10−16 amounts to an almost 50% decrease from the naive,
power-law estimate of Ayr−1 ≈ 7.1 × 10−16.

The amplitude of the full GWB calculation can be matched at 1 yr−1 using the power-law model by
introducing a uniform delay time of ∼ 7.2 Gyr—such that the systems which formed within a look-back
time of 7.2 Gyr don’t coalesce or reach the relevant frequency ranges. This is shown in Fig. 1.16 (purple,
dotted) as a heuristic comparison. At frequencies of the PTA band (∼ 0.1 yr−1) and higher, our full cal-
culation very nearly matches the Ayr−1 ∝ f−2/3 power-law. A significant flattening of the spectrum is
apparent at and below a few 10−2 yr−1, where environmental effects (e.g. LC-scattering) significantly in-
crease the rate at which MBHB move through a given frequency band, decreasing τh and thus attenuating
the amplitude of the GWB. The particular location and strength of the spectral flattening (or turnover)
depends on the details of the DF and especially LC models.
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Figure 1.16: Stochastic Gravitational Wave Background calculated from Illustris MBH binaries. The
‘Full’ calculation, shown in red, includes environmental effects from dynamical friction (‘Enh-Stellar’), stel-
lar scattering (Frefill = 0.6), and a viscous circumbinary disk. Purely power-law models are also shown, for
all Illustris MBHB (blue, dashed) and only the MBHB which coalesce by redshift zero after being delayed
for 7.2 Gyr (purple, dotted). The GWB strain amplitudes at the standard frequency of 1 yr−1 are given,
showing that a complete model of MBHB evolution leads to a ∼ 50% decrease of the signal. The most
stringent observational upper limits are also shown.

1.4.2.3 GWB Variations with Dynamical Friction and Loss-Cone Model Parameters

Figure 1.17 compares the GWB spectrum for different DF prescriptions (panels) and LC refilling
fractions (line colors). The naive, power-law model is shown as the dashed line for comparison, along with
the most stringent PTA upper limit. Effects from variations in the DF prescription are strongly subdomi-
nant to changes in the LC state. The spectral shape is determined almost entirely, and at times sensitively,
to Frefill. For Frefill < 0.8, the spectrum flattens at low frequencies, whereas for higher values it becomes a
turnover. Even then, the location of the peak amplitude of the spectrum changes by more than a factor of
two between Frefill = 0.8 and Frefill = 1.0.

The cutoff seen in the full LC case (Frefill = 1.0) is very similar to that found by Sesana (2013a)
(with ours ∼ 5 times lower amplitude), who show that in the scattering-dominated regime the GWB turns
into a hc ∝ f spectrum. McWilliams, Ostriker & Pretorius (2014) also find a spectral cutoff, but at an
order of magnitude higher frequency and amplitude. Unlike the results of Ravi et al. (2014), the cutoffs
in our predicted GWB spectra are always at lower frequencies than will be reached by PTA in the next
decade or so, likely because we assume zero eccentricity in the binary evolution. In the near future we
hope to present results expanded to include eccentric evolution, in addition to exploring ‘deterministic’
or ‘continuous’ GW sources—i.e. sources individually resolvable by future PTA observations.

For each DF case in Fig. 1.17, the GWB spectrum is almost identical between Frefill = 0.0, 0.2 & 0.4,
with very little change in the coalescing fractions. This is consistent with changes in the distribution of
lifetimes from varying DF and LC parameters. Looking at f = 1 yr−1, there is a sudden jump in am-

46



www.manaraa.com

MBH Binaries in Dynamical Environments 1.4 - Results

10-16

10-15

10-14

10-13

Enh-Stellar Frefill = 1. 0 

Frefill = 0. 8 

Frefill = 0. 6 

Frefill = 0. 4 

Frefill = 0. 2 

Frefill = 0. 0 

10-16

10-15

10-14

10-13

G
W

 C
h

a
ra

ct
e
ri

st
ic

 S
tr

a
in

 (
h
c
)

Enh-Gyr

Parkes: Shannon+2015

10-3 10-2 10-1 100 101

GW Frequency (Observed) [yr−1]

10-16

10-15

10-14

10-13

Force-Hard

Figure 1.17: Comparison of GWB spectrum with variations in the LC refilling parameter and DF model.
Each panel shows a different DF model, and each line-color a different Frefill. Solid lines show the full
GWB calculation while the dashed lines show the power-law model using all Illustris MBHB. Variations in
Frefill have much stronger effects on the spectrum than the DF model, changing the location and strength
of the spectral break at lower frequencies. There tends to be a substantial jump in GWB amplitude be-
tween Frefill = 0.4 and 0.6, with more gradual variations on either side. The full range of amplitudes at
1 yr−1 and 10−1 yr−1 are Ayr−1 = 0.14 – 0.47 × 10−15 and A0.1yr−1 = 5.4 – 17 × 10−15.
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Figure 1.18: Dependence of GWB strain amplitude and binary coalescing fraction on LC refilling param-
eter and DF model. The GW strain is measures at the canonical f = 1 yr−1, and the coalescing fraction
is defined using the population of high mass-ratio µ > 0.1 systems. Each symbol represents a different
DF model, and each color a different LC refilling parameter. Ayr−1 tends to increase monotonically with
Fcoal, but plateaus above Fcoal ≳ 0.5. The insets show how each Ayr−1 and Fcoal change with Frefill. The
strongest changes in Frefill and Ayr−1 occur at slightly different values of the refilling fraction. This is be-
cause for an increase in Frefill, the additional MBHB which are then able to coalesce tend to be the most
massive of those which were previously persisting. At Frefill ≈ 0.5 there is a significant change Ayr−1 , due
to more massive and stronger GW emitting MBHB merger at that point. At Frefill ≈ 0.7, Fcoal changes
significantly due to less massive MBHB then being able to merger, and them constituting a larger portion
of the binary population.

plitude with Frefill = 0.6, and a modest increase in the coalescing fraction. Between Frefill = 0.6 and
Frefill = 0.8, on the other hand, there tends to be a more modest increase in GWB amplitude, but a
roughly factor of two increase in Fcoal. This contrast arrises from the changing population of MBHB which
are brought to coalescence from each marginal change in refilling fraction. For an increase in Frefill, the
additional MBHB which are then able to coalesce tend to be the most massive of those which were previ-
ously persisting. Those, more massive systems, then have a larger effect on the GWB

Figure 1.18 shows the strain at 1 yr−1 (Ayr−1) versus coalescing fraction for the same set of DF and
LC models. The colors again show different Frefill, and now symbols are used for different DF prescriptions.
The GWB amplitude is strongly correlated with coalescing fraction, but plateaus once roughly 50% of high
mass-ratio MBHB are coalescing. Different DF parameters have little effect on Ayr−1 but more noticeably
affect Fcoal, in both cases this is especially true at higher Frefill. The inset panels show, independently, how
Ayr−1 and Fcoal scale with Frefill and DF model, reinforcing the previous points. In general, as Frefill in-
creases, lower total-mass MBHB systems are able to reach the PTA band, contribute to the GWB and
coalesce effectively. At Frefill ≈ 0.5, the large increase in Ayr−1 is driven by massive MBH coming to coa-
lescence, while at Frefill ≈ 0.7, a large number of MBH at lower masses are driven together, significantly
increasing the coalescing fraction, but only marginally increasing Ayr−1 .
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At the higher frequencies just discussed the GWB strain increases monotonically with Frefill and co-
alescing fraction. This is intuitive as increasing effectiveness of the LC means more MBHB are able to
reach the GW-regime and then coalesce. Fig. 1.17 shows that this trend is not the case at lower frequen-
cies (i.e. f ≲ 10−1 yr−1)—where the highest Frefill show a decrease in the GWB amplitude. This can be
seen more clearly in Fig. 1.26, which shows the GWB amplitude at f = 10−2 yr−1 versus coalescing frac-
tion. The trend is generally the same—strain increasing with Frefill—until Frefill = 1.0 at which point the
GWB amplitude drops significantly. At these low frequencies, LC stellar scattering is effective enough to
significantly attenuate the GWB amplitude. This reflects a fundamental tradeoff in the realization of en-
vironmental effects: on one side bringing more MBHB into a given frequency bands, at the same time as
driving their evolution rapidly through it, and attenuating the GW signal.

1.4.2.4 Effects of Circumbinary Viscous Drag on the GWB

The effects of viscous drag (VD) from a circumbinary disk are more subtle than those of DF and
LC. Fig. 1.19 compares the GWB from our fiducial model (black, dashed) with a variety of VD parameter
modifications (colored lines) and to a simulation with VD turned off (grey, dotted). All of these models
use the ‘Enh-Stellar’ DF, but because there is virtually no overlap in between the VD and DF regimes, the
results are very similar. The same VD parameters are explored as in the hardening rates shown in Fig. 1.9:
modifying the self-gravity (SG) instability radius (λsg), the maximum SG radius (RSG,Max), the maximum
accretion rate (fEdd), and the alpha viscosity parameter (α). The upper panel shows a moderately refilled
LC (Frefill = 0.6), while in the lower panel the LC is always full (Frefill = 1.0). The inset panels show the
ratio of GWB strain from each model to that of a ‘VD: Off’ (i.e. no disk) model.

The overall shape of the GWB spectrum and the location of the spectral turnover is again deter-
mined almost entirely by the LC. The circumbinary disk does affect an additional 10 – 40% amplitude
modulation, tending to increase the amplitude at low frequencies (≲ 10−2 yr−1) and decrease it at higher
frequencies (≳ 10−1 yr−1). This reflects the same tradeoff between bringing more MBHB into each fre-
quency band, versus driving them more rapidly through them. In the moderately (completely) refilled LC
case, our fiducial VD model amounts to a ∼ 20% (∼ 30%) decrease in Ayr−1 = hc(f = 1 yr−1) and simi-
larly at hc(f = 10−1 yr−1).

At frequencies near the PTA band, the relationship between Fcoal and the GWB amplitude can be
non-monotonic for VD variations, like with variations to the LC at low frequencies. For example, a com-
parison of Figures 1.9 & 1.19 shows that the α = 0.1 (green) model has the lowest fraction of high mass-
ratio coalescences (with Fcoal = 0.22, versus Fcoal = 0.24 for the fiducial model, and Fcoal = 0.31 for the
fEdd = 0.1 case) but an intermediate Ayr−1 .

One striking feature of the GWB strain ratios is the clear variations in spectral index, even at high
frequencies. This is especially true for the always full LC, where the slope of the GWB can deviate by al-
most 10% from the canonical −2/3 power-law. The disk-less model (grey, dotted) deviates by about 4%
(3%) for Frefill = 0.6 (Frefill = 1.0) at f = 1 yr−1, due to a combination of residual LC scattering effects
and some binaries stopping emitting after coalesce at varying critical frequencies. In our fiducial model
(black, dashed), the deviations are more significant at 6% (8%). As different parameters make VD harden-
ing more important at this frequency, the GWB amplitude decreases, and the spectral index tends to flat-
ten. Our fiducial VD model tends to have among the strongest spectral deviations. Towards lower frequen-
cies, where PTA are heading, the turnover in the GWB spectrum becomes more significant, especially if
the LC is effectively refilled. At f = 10−1 yr−1, for example, our fiducial model (‘Enh-Stellar’, Frefill = 0.6)
gives a spectral index of about −0.6, while for Frefill = 1.0 it becomes slightly flatter than −0.4. A sum-
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Figure 1.19: Gravitational wave background from varying viscous drag (VD) parameters. Simulations
with a variety of VD models are compared, with our fiducial model in dashed black, a model with no-VD
in dotted grey, and each color of line showing changes to a different parameter. For comparison, the power-
law model using all Illustris MBHB is also shown. The parameters modified are: the self-gravity (SG) in-
stability radius (λsg), the maximum SG radius (RSG,Max), the maximum accretion rate (fEdd), and the
alpha viscosity parameter (α). The hardening rates for each of these models are shown in Fig. 1.10. The
upper and lower panels show simulations for different LC refilling fractions. The inset panels show the ra-
tio of GWB amplitude from each model to the ‘VD: Off’ case, as a function of GW frequency. Different
VD parameters change Ayr−1 by 10 – 40%, and the spectral slope at 1 yr−1 by up to ∼ 10%.
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mary of GWB amplitudes and spectral indices are presented in Table 1.3, for a variety of configurations.
For a given binary system, GW radiation will always dominate at some sufficiently small separation

(high frequency) where the circumbinary disk dynamically decouples from the hardening MBHB. This
does not necessarily mean, however, that after considering a full ensemble of MBHB systems, with a va-
riety of masses, that there is any frequency band with a spectral slope identical to the purely GW-driven
case (hc ∝ f−2/3). Hardening rates as a function of GW frequency are shown in Fig. 1.20. The upper
panel includes all MBHB in our sample∗, for which we see that VD remains dominant well above the PTA
frequency band. The high total-mass systems (M > 3 × 109 M⊙)—which contribute the bulk of the GWB
signal—are shown in the lower panel. These binaries tend to be driven in roughly equal amounts by VD
and GW hardening at the frequencies where PTA detections should be forthcoming.

Figure 1.20 (and Fig. 1.11) show that the typical hardening rates for VD are very similar to that of
GW radiation. Indeed, as discussed in §1.3.3, the inner-most disk region has hardening times τv,1 ∝ r7/2,
while that of purely gravitational wave emission is τgw ∝ r4. Hardening rates for farther-out disk regions
tend to deviate more strongly from that of purely GW evolution, which could become more important for
lower density disks.

The MBH accretion rates, which set the density of the circumbinary disks in our models, are perhaps
one of the more uncertain aspects of the Illustris simulations, given that the accretion disk scale is well be-
low the resolution limit and must therefore rely on a sub-grid prescription. Additionally, out of all possible
configurations, the fiducial disk parameters we adopt tend to produce fairly strong effects on the GWB. If,
for example, a β-disk model is more accurate, or the α-viscosity should be lower, the effects in the PTA
band will be more moderate (see, e.g., Kocsis & Sesana 2011). None the less, we consistently see GWB
spectral indices between −0.6 and −0.65 at 1 yr−1, for a wide variety of model parameters. While these
≲ 10% deviations may be entirely unobservable in PTA observations (especially after taking stochastic
variations into account; e.g. Sesana, Vecchio & Colacino 2008), it may need to be considered when using
priors or match-filtering for detecting a GWB. More stringent observational constraints on specifically post
galaxy-merger AGN activity could be used to better calibrate the VD model.

∗Recall that we select only MBH with masses M > 106 M⊙.
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Figure 1.20: Binary hardening timescales versus GW frequency, by mechanism, for our fiducial model
(Frefill = 0.6, DF: ‘Enh-Stellar’). Lines and bands show the median and 50% intervals for individual mech-
anisms (colors), along with the total hardening rate (grey, hatched). The inset panels show the fraction of
binaries dominated by each mechanism, again versus frequency. The upper panel shows all MBHB in our
sample, while the lower panel includes only systems with total mass above 3 × 109M⊙, roughly where the
bulk of the GWB amplitude comes from. Only for the high mass systems do the majority become domi-
nated by GW emission at high frequencies, with VD still contributing substantially to the overall harden-
ing timescales.
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1.4.3 The Populations of MBHB

For the first time, we have used cosmological, hydrodynamic models which self-consistently evolve
dark matter, gas, stars and MBH, to more precisely probe the connection between MBHB mergers and
their environments. Previous calculations (see §1.1) of the GWB using SAM prescribe MBH onto their
galaxies based on scaling relations. The MBH population in Illustris, on the other hand, co-evolves with,
and shapes, its environment. These data are then much better suited to analyze the details of MBHB and
GW source populations, and their hosts.

Figure 1.21 shows the distribution of properties for sources contributing to the GWB, from top to
bottom: total mass (M), mass ratio (µ), and redshift (z). In the left column, these properties are weighted
by squared-strain∗ for each source, and the resulting one-, two-, and three-sigma contours are shown as
a function of GW frequency. The right column shows the cumulative distribution over the same source
properties, weighted by A2

yr−1 (solid), compared to the unweighted distribution of all sources contributing
at f = 1 yr−1. Strain-weighted sources tend to be at higher mass-ratios and much higher masses. While
the fraction of all binaries rises fairly smoothly with total masses between 107 and 109 M⊙ (dashed, black
line; top-right panel), 90% of the GWB is contributed (solid, black line) by binaries with total mass ≳
109 M⊙—simply showing the strong dependence of the GW strain on the total system mass.

The core contribution over all three parameters tends to remain fairly constant over GW frequency,
with median values around M ≈ 4 × 109 M⊙, µ ≈ 0.3, and z ≈ 0.3. The tails of the distribution drop to
noticeably lower values when moving to higher frequencies. This is especially pronounced in the redshift
distribution, where at frequencies of a few times 10−3 yr−1 virtually all GWB-weighted sources come from
z > 10−2, while at f = 1 yr−1, almost 10% are below that redshift. While ∼ 20% of binaries that reach
f = 1 yr−1 come from redshift above z = 1, they only contribute ∼ 0.5% of the GWB amplitude. Lower
redshift and higher mass-ratio systems do contribute somewhat disproportionately to the GWB amplitude,
but their distributions are altogether fairly consistent with the overall population. The presence of a non-
negligible fraction of low redshift sources motivates the need to explore populations of MBHB in the local
universe which could be resolvable as individual ‘stochastic’ sources, or contribute to angular anisotropies
in the GW sky. An analysis of our results in this context is currently underway, and the results will be
presented in a future study.

As we move into the forthcoming era of PTA detections it will be increasingly important to use self-
consistent hydrodynamic models to better understand the coupling of the MBH populations to their host-
galaxies and merger environments. The Illustris host-galaxy properties of our MBHB, at the time of bi-
nary formation, are presented in Fig. 1.22. We show stellar radius, stellar mass and ‘subhalo mass’, and
each of these properties† is strongly biased towards higher values when weighting by GW strain. In par-
ticular, the median, strain-weighted subhalo and stellar masses are each more than an order of magnitude
larger than the median of the host-galaxy population by number. The bias is exceedingly strong for stellar
mass, where ∼ 90% of the GWB amplitude is contributed by only ∼ 20% of MBHB host galaxies.

Following the galaxies that host MBHB to observe their parameters at the times they contribute sig-
nificantly to the GW spectrum will be important for any future multi-messenger observations using PTA
or predicting and deciphering anisotropies in the GWB (Taylor & Gair 2013; Mingarelli et al. 2013; Tay-
lor et al. 2015). Better understanding host galaxy properties as they evolve in time could also be useful in

∗As seen in Eq. 1.18, binaries contribute to the strain spectrum in quadrature.
†The stellar radius is measured as the stellar half-mass radius (R⋆,1/2); the stellar mass is the mass of star par-

ticles within R = 2 R⋆,1/2; and the subhalo mass is the combined mass of all particles and cells associated with
the host galaxy. While these simulation measurements are, of course, non-trivial to relate to their observational
counterparts, they are useful for relative comparisons.
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understanding whether ‘offset’ AGN (those distinctly separated from the morphological or mass-weighted
center of their galaxies) are due to binarity (i.e. a recent, or perhaps not so recent, merger) or possible due
to post-coalesce GW ‘kicks’ (e.g. Blecha et al. 2016).

Of great observational interest is the presence (e.g. Comerford et al. 2015), or perhaps conspicuous
absence (e.g Burke-Spolaor 2011), of dual and binary AGN. The observational biases towards finding or
systematically excluding MBH binaries with electromagnetic observations are extremely complex. None
the less, understanding the characteristic residence times of binaries at different physical separations, the
types of host galaxies they occupy, and the probability they will be observable (e.g. via the amount of gas
available to power AGN activity) is crucial to backing out the underlying population, and placing empiri-
cal constraints on models of MBHB inspiral. A systematic study of this topic using these data is currently
underway (Kelley et al. in prep.).

The fraction of MBHB which persist (i.e. remain uncoalesced) at redshift zero are shown in Fig. 1.23
as a function of total mass (left column) and mass ratio (right column). Three different separation criteria
are shown in each panel: r > 0.0 (i.e. any persisting MBHB; dark, dotted), r > 1 pc (medium, dot-dashed),
and r > 102 pc (light, dashed). Each row corresponds to a different DF model, and line colors vary by LC
refilling fractions. In general, persisting fractions fall rapidly with increasing total mass and moderately
with increasing mass ratio, until nearly equal-mass systems where the persisting fractions plummet.

The specific persisting fraction depends quite sensitively on both Frefill and DF model. The ‘Enh-
Stellar’ model has by far the most persisting systems, and relatively slight variance with either separa-
tion criteria or Frefill. For our fiducial model with Frefill = 0.6, 80% of all binaries persist, with only weak
trends with either total mass or mass ratio: 77% with M > 108 M⊙, and 74% with µ > 0.2. For systems
fulfilling both requirements, the persisting fraction drops more noticeably to 55%.

The r > 102 pc population in particular, is almost solely determined by DF, as the other harden-
ing mechanisms take effect only at smaller scales. At these large separations, persisting fractions for our
fiducial model are 46% (all), 45% (M > 108 M⊙), and 33% (µ > 0.2), but for both high total-mass and
mass-ratio, the widely-separated persisting fraction drops dramatically to only 1%. If the DF is more effec-
tive, as in the ‘Enh-Gyr’ model, these fractions decrease significantly to 11% (all), 15% (M > 108 M⊙), 6%
(µ > 0.2), and 1% (M > 108 M⊙ & µ > 0.2). A summary of persisting fractions at both r > 102 pc and
r > 1 pc, for mass combinations and DF & LC models are presented in Table 1.3.
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Figure 1.21: Population of MBHB contributing to the GWB. The left column shows, from top to bot-
tom, the MBHB total mass, mass ratio, and redshift, weighted by each system’s contribution to the GWB
amplitude. Contours represent one-, two-, and three- sigma intervals. The Right column shows cumula-
tive distributions, at a frequency of 1 yr−1, for the same parameters. The solid line weights by contribu-
tion to the GWB amplitude (A2

yr−1) and the dashed line is the distribution of the number of sources con-
tributing at 1 yr−1. The median values by GWB-contribution are roughly constant over GW frequency, at
M ≈ 4 × 109 M⊙, µ ≈ 0.3, and z ≈ 0.3 for this, our fiducial model. The overall distribution of sources
moves noticeably to include lower masses, mass ratios, and redshifts at higher GW frequencies. The con-
tribution from redshifts above z ≈ 0.4 drops sharply, with ≲ 1% of the GWB signal coming from z > 1.0,
while still ∼ 20% of all binaries emit there.
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Figure 1.22: The properties of host galaxies for the population of MBHB contributing to the GWB.
From top to bottom, rows show the stellar (half-mass) radius, stellar mass (within twice the stellar half-
mass radius), and subhalo mass (mass of all particles associated with the galaxy). The left column shows
these parameters weighted by their resident MBHB’s contribution to the GWB as a function of frequency.
The right column shows the cumulative distribution at f = 1 yr−1, both for contribution to GWB am-
plitude (solid) and by overall number (dashed). The GWB comes from MBHB predominantly in galaxies
which are over-sized and significantly over-massive—especially in stars.
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Figure 1.23: Fraction of binaries which persist at redshift zero as a function of total mass (left column)
and mass ratio (right column). Three different DF models are compared, from top to bottom: ‘Enh-
Stellar’, ‘Enh-Gyr’, and ‘Force-Hard’; and in each case, LC refilling parameters of Frefill = 0.6 (green)
and Frefill = 1.0 (blue) are compared. Different line patterns show binaries with different separations: all
separations (r ≥ 0.0, dotted), r ≥ 1 pc (dot-dashed), and r ≥ 102 pc (dashed). Note that in each panel
the r ≥ 102 pc distributions are indistinguishable between LC parameters as the LC only takes effect at
and below about 102 pc. The fraction of persisting systems is very strongly dependent on both DF and
LC model. For ‘Enh-Stellar’, the most conservative DF case, a large fraction of systems remain in the DF
regime (r ∼ 102 pc), before LC scattering can have a significant effect. ‘Force-Hard’, on the other hand,
represents an approximately optimal DF at large scales, and shows a corresponding dearth of wide separa-
tion systems. Observations of the true fraction of systems at these separations could strongly constrain the
efficiency of these hardening mechanisms.
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1.4.4 MBH Triples

The long characteristic lifetimes we see in our MBHB populations, and the (at times) substantial
number of systems which remain at large separations, immediately begs the question of how often a third
MBH (i.e. second galaxy merger) could become dynamically relevant. For Frefill = 1.0, the median life-
times of our MBHB tend to be comparable to the median time between binary formation events, and for
Frefill = 0.6, they are almost an order of magnitude longer. After selection cuts (see §1.2), 37% of our
MBH binaries have subsequent ‘merger’ events (i.e. a second ‘merger’ is recorded by Illustris involving
an MBH meeting our selection criteria). In our implementation, each of those binary systems are evolved
completely independently, even if parts of their evolution are occurring simultaneously∗. With this caveat,
we can still consider, very simplistically, in how many systems the second binary overtakes the first as they
harden. Out of the binaries with subsequent events, 83% (31% of all binaries) are overtaken, 76% (28%
overall) of those before redshift zero, and 42% (16%) with z > 0.0 and mass ratio µ > 0.2.

The tendency for subsequent binaries to cross in our simulations likely reflects systems’ ability to
increase noticeably in total mass over the course of the merger process. We emphasize that this is a very
simplistic and preliminary investigation. If, for example, MBH remnants tend to receive significant ‘kicks’
after merger, the resulting fractions could change significantly. None the less, the apparent commonality of
candidate multiples suggests that the role of triples should be investigated more thoroughly.

It is unclear how such triple systems should be treated, even in a simple semi-analytic manner (see,
however, Bonetti et al. 2016). The conventional wisdom of triple system dynamics is that the lowest mass
object will be ejected, while the more massive pair become bound in a binary (e.g. Hills 1975). Such ‘ex-
change’ interactions are motivated primarily from stochastic scattering events, like those which may occur
between stars in dense stellar environments. In these cases, the system can be viewed as nearly dissipation-
less, and their initial encounter is effectively stochastic. It is our premise, however, that the environments
and dynamics of MBH multiples are heavily dissipational. For example, consider an initial pair of MBH
which encounter at kpc scales, on a hyperbolic orbit. If the system quickly circularizes, and hardens to
scales of 1 − 100 pc, then a third MBH which encounters the system—again at kpc scales—may similarly
settle into an outer, roughly-circular orbit forming a hierarchical system. In such a situation, secular in-
stead of scattering dynamics, such as the Kozai-Lidov mechanism (Lidov 1962; Kozai 1962) or resonant
migration may be more appropriate than traditional three-body scatterings. In this case, the outer MBH
in the triple system may accelerate the hardening of the inner binary, driving it to coalescence (e.g. Blaes,
Lee & Socrates 2002). This may be less likely in gas-rich environments which could effectively damp eccen-
tric evolution, but here gas-driven inspiral will likely cause rapid coalescence in any case.

MBH triples forming hierarchically with low to moderate eccentricities may evolve in a resonant
fashion. If, on the other hand, environmental effects sufficiently enhance (or preserve initially high) ec-
centricities of MBHB, then the resulting highly radial orbits may strongly intersect. In that case, a more
stochastic-scattering-like regime may indeed still be appropriate. Numerous studies have suggested that
environmental effects can indeed enhance MBHB eccentricity (e.g. Quinlan 1996; Sesana 2010; Ravi et al.
2014). If the interaction between MBH triples (or even higher-order multiples) is indeed most similar
to scattering, then the simplest prescription of removing the lowest-mass BH, with or without some ad-
ditional hardening of the more massive pair, may still be appropriate (e.g. Hoffman & Loeb 2007). An
ejected MBH which may later fall back to the galactic center, while of great observational interest in and
of itself, is likely less important for GW emission per se.

The observation of a triple-AGN system could provide insight into the type of system they form
∗Recall that in Illustris, after the initial ‘merger’ event, only a single remnant MBH particle remains.
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(i.e. hierarchical vs. scattering), and their lifetimes. Additionally, MBH ejected by three-body interactions
could be observable as offset AGN, and possible confused with binary MBH, or ones ‘recoiling’ from previ-
ous coalescences (e.g. Blecha et al. 2011). We have assumed that recoiling systems do not significantly af-
fect our populations, effectively assuming that kicks are small—which is expected for spin-aligned MBHB.
This is motivated by studies which have shown that gravitational torques from circumbinary disks, such as
those we consider, can be effective at aligning spins on timescales significantly shorter than a viscous time
(e.g. Bogdanović, Reynolds & Miller 2007; Dotti et al. 2010; Miller & Krolik 2013).

The MBH populations from the Illustris simulations are well suited for this problem, as they accu-
rately follow the histories and large-scale environments of MBHB systems and host galaxies. As we are
currently working on implementing eccentric evolution into our simulations, we plan to explore multi-MBH
systems in more detail. This framework will also allow for the treatment of kicked MBH resulting from
random spin orientations, if for example the spins of a substantial fraction of MBHB occur in gas-poor
environments in which they may not be aligned.

1.5 Conclusions and Summary

For the first time, we have used the results of self-consistent, hydrodynamic cosmological simula-
tions, with a co-evolved population of Massive Black Holes (MBH) to calculate the plausible stochastic
Gravitational-Wave Background (GWB) soon to be detectable by Pulsar Timing Arrays (PTA). We have
also presented the first simultaneous, numerical treatment of all classes of MBH Binary (MBHB) harden-
ing mechanisms, discussing the effects of each: dynamical friction, stellar (loss-cone) scattering, gas drag
from a viscous circumbinary disk, and gravitational wave emission.

The most advanced previous studies have included only individual environmental effects, for example,
calculating dynamical friction (DF) timescales to determine which systems will contribute to the GWB
(McWilliams, Ostriker & Pretorius 2014), or attenuating the GWB spectrum due to loss-cone (LC) stellar-
scattering (Ravi et al. 2014). We explicitly integrate each of almost ten thousand MBH binaries, from
galactic scales to coalescence, using self-consistently derived, realistic galaxy environments and MBH ac-
cretion rates. We thoroughly explore a broad parameter space for each hardening mechanism to determine
the effects on the MBHB merger process, the lifetimes of systems, and the resulting GWB spectrum they
produce.

The resulting lifetimes of MBHB that coalesce by redshift zero are usually gigayears, while that of
low total-mass and extreme mass-ratio systems typically extend well above a Hubble time. In our fidu-
cial model, with a modest DF prescription (‘Enh-Stellar’) and moderately refilled LC (Frefill = 0.6), the
median lifetime of MBHB with total masses M > 108 M⊙ is 17 Gyr, with 23% coalescing before redshift
zero. Massive systems that also have high mass ratios, µ > 0.2, merge much more effectively, with a me-
dian lifetime of 6.9 Gyr and 45% coalescing at z > 0. Increasing the effectiveness of the LC drastically
decreases system merger times. For an always full LC (Frefill = 1.0), the lifetime of massive systems de-
creases to 4.9 Gyr and 0.35 Gyr for systems with M > 108 M⊙ and all mass ratios, and those with µ > 0.2
respectively. The coalescing fractions in these cases doubles to 54% and 99%. A summary of lifetimes and
coalescing fractions for different models is presented in Table 1.3.

The growing number of dual-MBH candidates (e.g. Deane et al. 2014; Comerford et al. 2015) presents
the opportunity to constrain binary lifetimes and coalescing fractions observationally. For most of our
models, only about 1% of MBHB with total masses M > 108 M⊙ and mass µ > 0.2 remain at separa-
tions r > 102 pc at redshift zero. At smaller separations, r > 1 pc, the fractions are dependent on model
parameters, but in general between 1 – 40%. Tabulated persisting fractions are included in Table 1.3 for
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a variety of models and situations. Observational constraints on these fractions can narrow down the rel-
evant parameter space of hardening physics. Accurate predictions for dual-MBH observations must fold
in AGN activity fractions and duty cycles, and their correlations with binary merger lifetimes. A compre-
hensive study of dual-AGN observability predicted by our models, over redshift and different observational
parameters, is currently underway.

In addition to measuring the fraction of MBH in associations (e.g. dual AGN) as a function of sepa-
ration, the redshift distribution of dual-MBH can be useful in understanding their evolution. The Illustris
simulations, for example, give a median MBHB formation redshift∗ of z ≈ 1.25. Depending on the parame-
ters of the hardening models, the median coalescing redshift can be anywhere between z ≈ 0.4 – 1.0, with
z ≈ 0.6 suggested by our fiducial model.

Without electromagnetic observations, GWB detections and upper limits can also be used to inform
our understanding of MBH evolution (e.g. Sampson, Cornish & McWilliams 2015). Even if the fraction
of systems which coalesce is quite low, the most massive and high mass-ratio systems, which produce the
strongest GW, are difficult to keep from merging. In a simulation with the weakest hardening rates (‘Enh-
Stellar’; Frefill = 0.0) only ∼ 12% of all binaries coalesce by redshift zero, but the GWB amplitude at
f = 1 yr−1 is still 0.2 × 10−15—only about a factor of five below the most recent upper limits†.

In our fiducial model, we use a moderate LC refilling rate (Frefill = 0.6) which increases the number
of MBHB contributing to the GWB at 1 yr−1, producing an amplitude of Ayr−1 ≈ 0.4 × 10−15. Increasing
the effectiveness of DF and/or LC scattering tends to increase the amplitude further. Our fiducial model
also includes fairly strong viscous drag (VD) from circumbinary disks, which decreases the time MBHB
spend emitting in each frequency band, and thus attenuating the GWB. This effect tends to be more sub-
tle, producing GWB attenuation of about 15%. In general, for a fairly broad range of parameters, our sim-
ulations yield GWB amplitudes between ∼ 0.3 − 0.6 × 10−15. A GWB amplitude of Ayr−1 ≈ 0.4 × 10−15

is less than a factor of three below current detection limits—a parameter space which will likely be probed
by PTA within the next decade.

The most stringent PTA upper limits of Ayr−1 ≲ 10−15 (Shannon et al. 2015) have already excluded
a broad swath of previous predictions. Many of those models assume that binary hardening is very effec-
tive, with all MBHB quickly reaching the PTA band and emitting an unattenuated signal—i.e. evolving
purely due to GW-emission, without additional environmental hardening effects. Following the same pro-
cedure, to calculate an upper-limit to the GWB based on our population of MBHB, we find a GWB ampli-
tude of Ayr−1 ≈ 0.7 × 10−15—slightly below the PTA limit. The Illustris simulation volume is very large
for a hydrodynamic simulation, but it lacks the very-rare, most massive MBH in the universe (≳ 1010 M⊙)
which could slightly increase our predicted GWB amplitude—although, likely a correction on the order of
∼ 10%‡ (Sesana, private communication). None the less, our upper limit suggests that the current lack of
PTA detections shouldn’t be interpreted as a missing signal.

Our upper-limit value of Ayr−1 ≈ 0.7 × 10−15 falls just within the lower end of some recent studies
(e.g. Ravi et al. 2014; Roebber et al. 2016), but is generally lower than much of the previous literature (see
e.g. Table 1.1, and Fig. 2 of Shannon et al. 2015). Likely, this is at-least partly because the MBH merger

∗Recall that MBHB ‘formation’, in this context, corresponds to two MBH coming within a few kpc of ea-
chother.

†Previous studies have shown that including eccentric evolution can significantly decrease the GWB amplitude
(Ravi et al. 2014), so we caution that the weakest GWB observed in our simulations, which do not include eccen-
tric evolution, may not be a robust lower limit. We are currently exploring the effects of eccentricity, and altered
MBH-Host scaling relations on the minimum plausible GWB—to be presented in a future study.

‡The effects of simulation volume on the predicted GWB amplitude should be studied more carefully to con-
firm this estimate.
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rates derived from Illustris are based directly on simulated galaxy-galaxy merger rates. The bulk of exist-
ing calculations have either used inferences from (dark matter only) halo-halo mergers which may have
systematic issues (see, e.g., Rodriguez-Gomez et al. 2015), or observations of galaxy merger rates which
have uncertain timescales. This upper-limit is based on optimistic, GW-only evolution. In our fiducial
model, the signal is lower by ∼ 50% due primarily to the moderately refilled LC, and mildly due to VD
attenuation.

Variations in the rate at which the stellar LC is refilled has the strongest effect on the shape and
amplitude of the GWB spectrum in our simulations, especially at low frequencies. PTA observations are
moving towards these frequencies, as the duration of their timing baselines increase. Unlike at higher fre-
quencies where scattering increases the number of MBHB contributing to the GWB, at 10−1 yr−1, for ex-
ample, effective LC refilling leads to attenuation of the GWB from accelerated binary hardening. Here,
our spectra tend to lie at amplitudes between 1.5 – 2.5 × 10−15, with spectral indices between about
−0.4 and −0.6—a significant deviation from the canonical −2/3 power-law. At frequencies lower still
(f ≲ 10−2 yr−1), the effective LC scattering produces a strong turnover in the GWB spectrum. A sum-
mary of GWB amplitudes and spectral indices is presented in Table 1.3 for both f = 1 yr−1 and 10−1 yr−1,
and numerous hardening models.

In our fiducial simulation, we find that the median contribution to the GWB comes from binaries at
a redshift of z ≈ 0.3, with total masses M ≈ 109 M⊙, and mass ratios µ ≈ 0.3. The co-evolved population
of MBH and galaxies in Illustris allows us to also examine typical host-galaxy properties for the first time.
Galaxies containing MBHB contributing strongly to the GWB are noticeably larger and more massive
galaxies. The median stellar mass of galaxies, weighted by GWB contribution, is about 3 × 1011M⊙—more
than an order of magnitude larger than the median stellar mass for all galaxies.

Based on the merger trees and binary lifetimes produced from our simulations, we have also shown
that the presence of higher-order MBH multiples could be an non-negligible aspect of MBH evolution. The
simplest examination suggests that triples could be important in about 30% of MBHB in our simulations.
In future work, we will explore these triple systems in more detail, as well as the effects of nonzero eccen-
tricity and post-merger recoils. We also hope to implement more self-consistent LC refilling, and more
comprehensive tracking of the changing galactic environment.

In summary,

• MBH binary lifetimes tend to be multiple Gyr, even for massive systems. While massive
and high mass ratio systems are likely rare at very large separations, observations of dual MBH at
r > 1 pc can be used to constrain the merger physics.

• The GWB amplitude predicted by our models is A1 yr−1 ≈ 0.4 × 10−15, with a range of
about 0.3 – 0.6 × 10−15 for different hardening parameters. At lower frequencies, we find
A0.1 yr−1 ≈ 1.5 – 2.5 × 10−15, with spectral indices between −0.4 & −0.6—a noticeable deviation
from the canonical −2/3 power-law.

• We find that the lack of PTA detections so far is entirely consistent with our MBH
population, and does not require environmental effects. At the same time, our most conservative
models yield a GWB amplitude of Ayr−1 = 0.2 × 10−15. While incorporating non-zero eccentrici-
ties may further suppress our GWB predictions, our simulations suggest that if PTA limits improve
by a factor of 3–4 and no detection is made, our understanding of galaxy and MBH evolution may
require revision.

• The median redshift and total mass of MBHB sources contributing to the GWB are
z ≈ 0.3 and a few 109 M⊙, while the median coalescence time of all systems tends towards z ≈
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0.6. Observations of the redshift distribution and host galaxy properties of dual-MBH can be infor-
mative for our understanding of binary evolution.

• Our simulations suggest that up to 30% of binaries could involve the presence of a
third MBH. The role of MBH triples is currently unclear, but should be explored and included
in future simulations.

The environments around MBHB form a complex and interwoven parameter space with additive and
often degenerate effects on the GWB. Better constraints on MBH–host correlations, combined with in-
creasingly strict upper limits on the GWB amplitude, will soon tightly constrain the efficiency with which
MBHB are able to coalesce. That efficiency then determines the fraction of galaxies which should have
observable dual or binary AGN, providing an additional test of our most fundamental assumptions of
MBH/galaxy growth and co-evolution. We believe that our results, and similar analyses, can be used to
leverage GWB observations along with dual and offset AGN to comprehensively understand the MBH pop-
ulation and their evolution. These exotic binaries involve a plethora of dynamical processes which are still
poorly understood, but affect our most fundamental assumptions of black holes in the universe and thus
the evolution of galaxies over cosmological time. Right now, we are entering the era of GW astronomy,
and with it, a direct view of BH physics and evolution on all scales.
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Figure 1.24: Binary hardening timescales versus separation for different DF models (rows) and LC refill-
ing fractions (columns). Colored lines and bands show the median and 50% intervals for each hardening
mechanism: Dynamical Friction (DF), Loss-Cone (LC) scattering, Viscous Drag (VD), and Gravitational
Wave (GW) emission with the total hardening rate shown by the grey, hatched region. The inset panels
shows the fraction of binaries dominated by each mechanism, also as a function of separation. Note: in
the ‘Force-Hard’ model, the binary separation is artificially altered faster than the timescale shown (be-
tween about ≳ 102 pc). While the DF hardening timescale is still relatively long, the binaries are forcibly
hardened at a faster rate.
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Figure 1.25: Binary lifetimes (upper row) and coalescing fractions (lower row) for our fiducial, moder-
ately refilled loss cone (Frefill = 0.6; left) and an always full one (Frefill = 1.0; right). Both simulations use
the ‘Enh-Stellar’ DF model. The overall distribution of MBHB lifetimes are shown in the upper-right-most
panel for each simulation, with the cumulative distribution plotted as the dashed line. For Frefill = 0.6,
most binaries need to be both high total mass (M ≳ 108M⊙), and moderately high mass ratio (µ ≳ 10−2)
to have lifetimes short enough to coalesce by redshift zero. In the Frefill = 1.0 case, on the other hand,
either criteria is sufficient—and the coalescing fraction in that parameter space approach unity.
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Figure 1.26: Dependence of GWB strain amplitude and binary coalescing fraction on LC refilling param-
eter and DF model. The GW strain is measures at very low frequencies, f = 10−2 yr−1, and the coalescing
fraction is defined using the population of high mass-ratio µ > 0.1 systems. Each symbol represents a dif-
ferent DF model, and each color a different LC refilling parameter. Ayr−1 tends to increase monotonically
with Fcoal, until the highest Frefill. At Frefill ≈ 1.0, LC stellar scattering is effective enough at these low
frequencies to significantly attenuate the GWB amplitude.
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Summary Of Quantitative Results for a Variety of Parameter Configurations
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M
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D
ynam
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1
-A

ppendix

GWB
Dynamical Friction Loss Cone Amplitude [10−16] Spectral Index Subset Lifetimes [Gyr] Coalescing Fraction Persisting Fraction

(Viscous Disk) 1 yr−1 0.1 yr−1 1 yr−1 0.1 yr−1 Full (Coal) > 1 pc > 102 pc

Enh-Stellar
(VD: None)

Frefill = 0.6 4.3 18 -0.64 -0.55

All (M > 106 M⊙) 37 (1.3) 1641/9270 (0.18) 0.67 0.46
µ > 0.2 32 (1.1) 1089/4759 (0.23) 0.57 0.33
M > 108 M⊙ 26 (1.7) 504/2610 (0.19) 0.68 0.45
M > 108 M⊙,µ > 0.2 11 (0.89) 184/478 (0.38) 0.37 0.01

Frefill = 1.0 6.6 25 -0.65 -0.39

All 8.0 (1.3) 4556/9270 (0.49) 0.47 0.46
µ > 0.2 5.1 (1.1) 2840/4759 (0.60) 0.35 0.33
M > 108 M⊙ 5.2 (0.80) 1414/2610 (0.54) 0.45 0.45
M > 108 M⊙,µ > 0.2 0.37 (0.35) 469/478 (0.98) 0.01 0.01

Enh-Stellar
(VD: Fiducial)

Frefill = 0.6 3.7 15 -0.63 -0.59

All 29 (2.7) 1875/9270 (0.20) 0.66 0.46
µ > 0.2 26 (2.2) 1225/4759 (0.26) 0.55 0.33
M > 108 M⊙ 17 (4.0) 608/2610 (0.23) 0.64 0.45
M > 108 M⊙,µ > 0.2 6.9 (3.3) 214/478 (0.45) 0.28 0.01

Frefill = 1.0 4.7 17 -0.61 -0.38

All 7.7 (1.2) 4634/9270 (0.50) 0.47 0.46
µ > 0.2 4.8 (1.0) 2900/4759 (0.61) 0.35 0.33
M > 108 M⊙ 4.9 (0.79) 1422/2610 (0.54) 0.45 0.45
M > 108 M⊙,µ > 0.2 0.35 (0.35) 472/478 (0.99) 0.01 0.01

Enh-Gyr
(VD: Fiducial)

Frefill = 0.6 3.8 16 -0.63 -0.62

All 13 (1.1) 3536/9270 (0.38) 0.38 0.11
µ > 0.2 13 (0.33) 1970/4759 (0.41) 0.30 0.06
M > 108 M⊙ 8.3 (3.5) 1091/2610 (0.42) 0.39 0.15
M > 108 M⊙,µ > 0.2 6.4 (3.0) 229/478 (0.48) 0.26 0.01

Frefill = 1.0 4.7 17 -0.61 -0.38

All 0.42 (0.30) 7783/9270 (0.84) 0.12 0.11
µ > 0.2 0.37 (0.28) 4122/4759 (0.87) 0.07 0.06
M > 108 M⊙ 0.32 (0.25) 2200/2610 (0.84) 0.15 0.15
M > 108 M⊙,µ > 0.2 0.20 (0.20) 474/478 (0.99) 0.01 0.01

Force-Hard
(VD: Fiducial)

Frefill = 0.6 3.6 15 -0.64 -0.61

All 14 (3.0) 3089/9270 (0.33) 0.32 0.02
µ > 0.2 17 (1.9) 1627/4759 (0.34) 0.24 0.01
M > 108 M⊙ 7.8 (4.4) 1093/2610 (0.42) 0.30 0.04
M > 108 M⊙,µ > 0.2 7.0 (3.1) 212/478 (0.44) 0.23 0.00

Frefill = 1.0 4.7 17 -0.61 -0.38

All 0.42 (0.30) 7783/9270 (0.84) 0.03 0.02
µ > 0.2 0.37 (0.28) 4122/4759 (0.87) 0.02 0.01
M > 108 M⊙ 0.32 (0.25) 2200/2610 (0.84) 0.05 0.04
M > 108 M⊙,µ > 0.2 0.20 (0.20) 474/478 (0.99) 0.01 0.00

Table 1.3: Summary of quantitative results for the gravitational wave background (GWB), and MBH binary lifetimes & coalescing/persisting frac-
tions. The lifetimes shown are median values of systems in each the ‘Full’ subset, and only those which coalesce by redshift zero (‘Coal’)—the num-
ber (and fraction) of such systems are given in the ‘Coalescing Fraction’ column. Finally, the fraction of systems which remain uncoalesced at sepa-
rations r > 1 pc and r > 102 pc are shown in the ‘Persisting Fraction’ column. Results for a simulation using models with all fiducial parameters
are shown in bold.
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Stellar, Loss-Cone (LC) Scattering Calculations

The rate at which stars can refill the loss cone is governed by the ‘relaxation time’ (τrel). Following
Binney & Tremaine (1987), consider a system of N masses m, with number density n, and characteristic
velocities v. The relaxation time can be written as,

τrel ≈ N

8 ln Λ
τcross ≈ v3

8πG2m2n ln Λ
, (1.19)

where ln Λ is again the Coulomb Logarithm, and τcross ≡ r/v is the crossing-time. τrel represents the char-
acteristic time required to randomize a particle’s velocity via scatterings, i.e., Eq. 1.19 can be used to de-
fine the diffusion coefficient Dv2 as, τrel ≈ v2/Dv2 . If t/τrel ≪ 1, then two-body encounters (and relaxation)
haven’t been important.

Consider a distribution function (or phase-space density) f = f(x⃗, v⃗), such that the number of stars
in a small spatial-volume d3x⃗ and velocity-space volume d3v⃗ is given as f(x⃗, v⃗) d3x⃗ d3v⃗. In a spherical sys-
tem in which there are the conserved energy E and angular momentum L⃗, the six independent position
and velocity variables can be reduced to these four independent, conserved quantities via the Jeans theo-
rem. Furthermore, if the system is perfectly spherically symmetric—which we assume in our analysis, then
the three independent angular momentum components can be replaced with the angular momentum mag-
nitude, i.e. f = f(E, L).

If we define a relative potential and relative energy, Ψ ≡ −Φ+Φ0, and, E ≡ −E +Φ0 = Ψ− 1
2 v2, then

we can calculate the number density as∗,

n(x⃗) = n(x) = 4π

∫ √
2Ψ

0
f(x, v)v2 dv

= 4π

∫ Ψ

0
f(E) [2(Ψ − E)]1/2

dE .

(1.20)

Inverting this relationship, the distribution function can be calculated from an isotropic density profile
using,

f(E) = 1
π2

√
8

d

dE

∫ E

0

dn

dΨ
dΨ

(E − Ψ)1/2

= 1
π2

√
8

[
E−1/2

(
dn

dΨ

)
Ψ=0

+
∫ E

0

d2n

dΨ2
dΨ

(E − Ψ)1/2

]
.

(1.21)

We have found the latter form of (1.21) to be much simpler and more reliable to implement.
We follow the discussion and prescription for loss-cone scattering given by Magorrian & Tremaine

(1999), corresponding to a single central object in a spherical (isotropic) background of stars. We adapt
this prescription simply by modifying the radius of interaction to be appropriate for scattering with a bi-
nary instead of being tidally disrupted by a single MBH. A more extensive discussion of loss-cone dynamics—
explicitly considering MBH binary systems and asphericity—can be found in Merritt (2013).

Stars with a pericenter distance smaller than some critical radius Rcrit will interact with the binary.
For a fixed energy (E) orbit, there is then a critical angular momentum, Jlc(E) = Rcrit (2 [E − Ψ(Rcrit)])1/2 ≈
Rcrit (2 [−Ψ(Rcrit)])1/2, which defines the loss-cone (Frank & Rees 1976; Lightman & Shapiro 1977). In
general, the number of stars with energy and angular momentum in the range dE and dJ2 around E and
J2 can be calculated as,

N(E , J2) dE dJ2 = 4π2 f(E , J2) · P (E , J2) dE dJ2, (1.22)
where P (E , J2) is the stellar orbital period. For an isotropic stellar distribution f(E , J2) = f(E), and

∗Φ0 is arbitrary, but Φ0 ≡ E(r → ∞) may be convenient.
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P (E , J2) ≈ P (E). The total number of stars can be calculated as,
Ni(E) dE = 4π2 f(E) P (E) J2

i (E) dE . (1.23)
For the number of stars in the loss-cone Nlc(E), this uses the LC angular momentum, J2

i (E) = J2
lc(E);

and for all stars N(E), the circular (and thus maximum) angular momentum, J2
i (E) = J2

c (E). When we
initially calculate the distribution function, we use the stellar density profile from Illustris galaxies which
have recently hosted a MBH ‘merger’ event (see: §1.2.2). We assume that the resulting distribution func-
tion f(E) is (so-far) unperturbed by the MBH binary, i.e. it does not take into account stars already lost
(scattered). The resulting Nlc(E) from Eq. 1.23 then corresponds to the number of stars in the ‘full’ loss-
cone specifically.

Stars in the LC are consumed on their orbital timescale τorb = P (E). The rate of flux of stars to
within Rcrit is then,

F full
lc (E) dE = 4π2 f(E) J2

lc(E) dE , (1.24)
coming almost entirely from within the central objects sphere of influence Rinfl, defined as M(r < Rinfl) ≈
M•. Refilling of the loss-cone occurs on the characteristic relaxation timescale τrel. From Eq. 1.19, it is
clear that τorb/τrel ≈ τcross/τrel ≪ 1, i.e. the loss-cone is drained significantly faster than it is refilled—and
the loss-cone will, in general, be far from ‘full’.

To calculate the steady-state flux of the loss-cone, the Fokker-Planck equation must be solved with
a fixed (unperturbed) background stellar distribution at the outer edge of the LC and no stars surviving
within the scattering region at the inner-edge. A full derivation can be found in Magorrian & Tremaine
(1999), which yields a equilibrium flux of stars,

F eq
lc (E) dE = 4π2P (E)J2

c (E)f(E) µ(E)
ln R−1

0 (E)
, (1.25)

where the angular momentum diffusion parameter µ ≡ 2r2Dv2/J2
c , and,

ln R−1
0 = − ln Rcrit +

q q ≥ 1

0.186q + 0.824√
q q < 1

, (1.26)

describes the effective refilling radius depending on which refilling regime (‘pin-hole’ or ‘diffusive’, see
Fig. 1 of Lightman & Shapiro 1977) is relevant, for a refilling parameter q(E) ≡ P (E) µ(E)/Rcrit(E).

Equations 1.24 & 1.25 give the full and steady-state LC fluxes, which are interpolated between using
a logarithmic, ‘refilling fraction’ (Eq. 1.11) which then determines the hardening rate of each binary in our
simulations.
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The Gravitational Wave Background from

Massive Black Hole Binaries in Illustris:
spectral features and time to detection

with pulsar timing arrays

This thesis chapter originally appeared in the literature as
Luke Zoltan Kelley, Laura Blecha, Lars Hernquist, Alberto Sesana, Stephen R. Taylor
MNRAS, 471, 4. arXiv:1702.02180

abstract

Pulsar Timing Arrays (PTA) around the world are using the incredible consistency of
millisecond pulsars to measure low frequency gravitational waves from (super)Massive

Black Hole (MBH) binaries. We use comprehensive MBH merger models based on cosmolog-
ical hydrodynamic simulations to predict the spectrum of the stochastic Gravitational-Wave
Background (GWB). We use real Time-of-Arrival (TOA) specifications from the European,
NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection
of the GWB across a wide range of model parameters. In addition to exploring the parame-
ter space of environmental hardening processes (in particular: stellar scattering efficiencies),
we have expanded our models to include eccentric binary evolution which can have a strong
effect on the GWB spectrum. Our models show that strong stellar scattering and high charac-
teristic eccentricities enhance the GWB strain amplitude near the PTA sensitive “sweet-spot"
(near the frequency f = 1 yr−1), slightly improving detection prospects in these cases. While
the GWB amplitude is degenerate between cosmological and environmental parameters, the
location of a spectral turnover at low frequencies (f ≲ 0.1 yr−1) is strongly indicative of envi-
ronmental coupling. At high frequencies (f ≳ 1 yr−1), the GWB spectral index can be used
to infer the number density of sources and possibly their eccentricity distribution. Even with
merger models that use pessimistic environmental and eccentricity parameters, if the current
rate of PTA expansion continues, we find that the International PTA is highly likely to make
a detection within about 10 years.
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2.1 Introduction

Pulsar Timing Arrays (PTA) are expected to detect Gravitational Waves (GW; Sazhin 1978; De-
tweiler 1979; Romani & Taylor 1983) from stable binaries of (super)-Massive Black Holes (MBH; Rajagopal
& Romani 1995; Wyithe & Loeb 2003; Phinney 2001). These arrays use correlated signals in the con-
sistently timed pulses from millisecond pulsars to search for low-frequency (≲ 10 yr−1) perturbations
to flat space-time (Hellings & Downs 1983; Foster & Backer 1990). There are currently three indepen-
dent PTA searching for GW signals: the North-American Nanohertz Observatory for Gravitational waves
(NANOGrav; McLaughlin 2013), the European PTA (EPTA; Kramer & Champion 2013), and the Parkes
PTA (PPTA; Manchester et al. 2013). Additionally, the International PTA (IPTA, Hobbs et al. 2010) is a
collaboration which aims to combine the data and expertise from each independent group.

Comparable upper limits on the presence of a stochastic Gravitational Wave Background (GWB)
have been calculated by the EPTA (Lentati et al. 2015), NANOGrav (Arzoumanian et al. 2016), PPTA
(Shannon et al. 2015) and IPTA (Verbiest et al. 2016). These upper limits are already astrophysically in-
formative in that much of the previously predicted parameter space is now in tension with observations,
and there are suggestions that some models are excluded (Shannon et al. 2015). Many previous GWB
models have assumed that most or all of the MBH pairs formed after the merger of their host galaxies
are able to quickly reach the ‘hard binary’ phase∗ (≲ 10 pc) and eventually coalesce due to GW emis-
sion (e.g. Wyithe & Loeb 2003; Jaffe & Backer 2003; Sesana 2013b). These models, which assume GW-
only driven evolution and produce purely power-law GWB spectra, likely over-predict the GWB energy in
that: 1) perhaps a substantial fraction of MBH Binaries stall at galactic scales (∼ kpc), or before reach-
ing the small separations (∼ 10−3–10−1 pc) corresponding to the PTA sensitive band (e.g. McWilliams,
Ostriker & Pretorius 2014); and 2) significant ‘attenuation’ of the GW signal may exist due to environmen-
tal processes (non-GW hardening, due to stellar scattering or coupling with a circumbinary gaseous disk)
which decrease the amount of time binaries spend in a given frequency interval (e.g. Kocsis & Sesana 2011;
Sesana 2013b; Ravi et al. 2014; Rasskazov & Merritt 2016).

Some recent GW-only models predict lower signal levels because of differing cosmological assump-
tions (i.e. galaxy-galaxy merger rates, the mass functions of MBH, etc) which produce different distribu-
tions of MBH binaries (e.g. Roebber et al. 2016; Sesana et al. 2016), eliminating the tension with PTA up-
per limits. More comprehensive models have also been assembled which take into account binary-stalling
and GW-attenuation (e.g. Ravi et al. 2014). Some of these models suggest that the GWB is only just be-
low current observational sensitivities, which begs the question, ‘how long until we make a detection?’ Re-
cently, PTA detection statistics conveniently formalized in Rosado, Sesana & Gair (2015) have been used
by Taylor et al. (2016b) to calculate times to detections for purely power-law, GW-only GWB models with
a full range of plausible GWB amplitudes. Vigeland & Siemens (2016) also calculate detection statistics
using a more extensive suite of broken power-laws to model the effects of varying environmental influences.

In Kelley, Blecha & Hernquist (2017, hereafter ‘Paper-1’) we construct the most comprehensive MBHB
merger models to date, using the self-consistently derived population of galaxies and MBH from the Illus-
tris cosmological, hydrodynamic simulations (§2.2.1, e.g. Vogelsberger et al. 2014a; Genel et al. 2014). The
MBHB population is post-processed using semi-analytic models of GW emission in addition to environ-
mental hardening mechanisms that are generally required for MBHB to reach small separations within
a Hubble time (e.g. Begelman, Blandford & Rees 1980; Milosavljević & Merritt 2003), and emit GW in
PTA-sensitive frequency bands.

∗‘Hard’ binaries are distinguished by, and important because, scattering interactions tend to further harden the
binary (e.g. Hut 1983).
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In this paper, we introduce the addition of eccentric binary evolution to our models, and explore its
effects on the GWB. To produce more realistic GWB spectra, we complement our previous semi-analytic
(SA) calculations with a more realistic, Monte-Carlo (MC) technique. Using our merger models and re-
sulting spectra, we calculate realistic times to detection for each PTA following Rosado, Sesana & Gair
(2015) & Taylor et al. (2016b). In §2.2 we describe our MBHB, GWB and PTA models. Then in §2.3 we
describe the effects of eccentricity on binary evolution (§2.3.1) and the GWB spectrum (§2.3.2) including
comparisons between the SA and MC calculations, and finally our predictions for times to GWB detec-
tions (§2.3.3).

2.2 Methods

Our simulations use the coevolved galaxies and MBH particles from the Illustris cosmological, hydro-
dynamic simulations (Vogelsberger et al. 2013; Torrey et al. 2014; Vogelsberger et al. 2014b; Genel et al.
2014; Sijacki et al. 2015) run using the Arepo ‘moving-mesh’ code (Springel 2010). Our general procedure
of extracting MBH, their merger events and their galactic environments are described in detail in Paper-1.
Here, we give a brief overview of our methods (§2.2.1) and the improvements made to include eccentric bi-
nary evolution (§2.2.2). We then describe the methods by which we calculate GW signatures (§2.2.3) and
realistic detection statistics for simulated PTA (§2.2.4).

2.2.1 Illustris MBH Mergers and Environments

The Illustris simulation is a cosmological box of 106.5 Mpc on a side (at z = 0.0) containing moving-
mesh gas cells, and particles representing stars, dark matter, and MBH. All of the Illustris data is pub-
licly available online (Nelson et al. 2015). MBH are ‘seeded’ with a mass of 1.42 × 105 M⊙ into halos with
masses above 7.1 × 1010 M⊙ (Sijacki et al. 2015), where they accrete gas from the local environment and
grow over time. As they develop, they proportionally deposit energy back into the local environment (Vo-
gelsberger et al. 2013). When two MBH particles come within a gravitational smoothing length of one
another (typically on the order of a kpc) a ‘merger’ event is recorded. From those mergers we identify the
constituent MBH and the host galaxy in which they subsequently reside. From the host galaxy, density
profiles are constructed which are used to determine the environment’s influence on the MBHB merger
process. The simulations used here, as in Paper-1, are semi-analytic models which integrate each binary
(independently) from large-scale separations down to eventual coalescence based on prescriptions for GW-
and environmentally- driven hardening.

2.2.2 Models for Eccentric Binary Evolution

We implement four distinct mechanisms which dissipate orbital energy and ‘harden’ the MBHB (as
in Paper-1):

• Dynamical Friction (DF, dominant on ∼ kpc scales) is implemented following Chandrasekhar
(1943) and Binney & Tremaine (1987), based on the local density (gas and dark matter) and ve-
locity dispersion. The mass of the decelerating object is taken as the mass of the secondary MBH
along with its host galaxy. We assume a model for tidal stripping such that the decelerating mass
decreases as a power-law from the combined mass, to that of only the secondary MBH, over the
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course of a dynamical time∗. With the addition of eccentric binary evolution, we make the approxi-
mation that DF does not noticeably affect the eccentricity distribution of binaries (e.g. Colpi, Mayer
& Governato 1999; van den Bosch et al. 1999; Hashimoto, Funato & Makino 2003), and that the
semi-major axis remains the relevant distance scale. Equivalently, the “initial” eccentricities in our
models can be viewed as the eccentricity once binaries enter the stellar scattering regime.

• Stellar Loss-Cone (LC) scattering (∼ pc), is implemented using the prescription from Sesana,
Haardt & Madau (2006) & Sesana (2010) following the formalism of Quinlan (1996). Here, the hard-
ening rate (da/dt) and eccentricity evolution (de/dt) are determined by dimensionless constants H

and K, calculated in numerical scattering experiments such that,
da

dt

∣∣∣∣
u

≡ −Gρ

σ
a2 H, (2.1)

and
de

dt

∣∣∣∣
u

≡ Gρ

σ
a H K. (2.2)

Here the binary separation (semi-major axis, a) and eccentricity (e) are evolved based on profiles of
density (ρ) and velocity dispersion (σ) calculated from each binary host-galaxy in Illustris. We use
the fitting formulae and tabulated constants for H and K from Sesana, Haardt & Madau (2006)†.
Note that this semi-empirical approach, which we will refer to as ‘eccentric LC models’, explicitly
assumes a full loss-cone in the scattering experiments by which they are calibrated.

In our previous calculations presented in Paper-1, we used a different LC prescription for binaries
restricted to circular orbits. In this paper we focus on the eccentric LC models, but include results
with our previous ‘circular’ prescription for comparison. The circular models‡ include a dimension-
less ‘refilling parameter’, Frefill ∈ {0.0, 1.0}, which interpolates between a ‘steady-state’ LC (Frefill = 0.0),
where equilibrium is reached between the scattering rate and refilling by the two-body diffusion of
stars; and a ‘full’ LC (Frefill = 1.0), where the stellar distribution function is unaltered by the pres-
ence of the scattering source. The Frefill parameter for true astrophysical binaries is highly uncertain,
but can drastically affect the efficiency with which binaries coalesce (see the discussion in Paper-1).
We explore six models with, Frefill = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]. Some recent studies tend to favor
nearly-full LC models (e.g. Sesana & Khan 2015; Vasiliev, Antonini & Merritt 2015). The eccentric
LC model, with imposed zero-eccentricities (e0 = 0.0), yields results very similar to the circular-only
model with a full LC (Frefill = 1.0), as expected.

• Gas drag from a circumbinary, Viscous Disk (VD; ∼ 10−3 pc) is calculated following the
thin disk models from Haiman, Kocsis & Menou (2009). In these models, the disk is composed of
three, physically distinct regions (Shapiro & Teukolsky 1986) determined by the dominant pressure
(radiation versus thermal) and opacity (Thomson versus free-free) sources. From inner- to outer-
disk, the regions are: 1) radiation & Thomson, 2) thermal & Thomson, and 3) thermal & free-free.

∗The dynamical time used is that of the primary’s host galaxy. This corresponds to the ‘Enh-Stellar’ model
from Paper-1.

†Sesana, Haardt & Madau (2006): Eqs. 16 & 18, and Tables 1 & 3, respectively
‡These follow the theoretically-derived formulae from Magorrian & Tremaine (1999) for a spherically-symmetric

background of stars scattering with a central object. Scattering rates are calculated assuming isotropic, Maxwellian
velocities and stellar distribution functions calculated from each galaxy’s stellar density profile. The density pro-
files are extended to unresolved (≲ pc) scales with power-law extrapolations. Additional details on Illustris stellar
densities are included in §2.4.
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The disk density profiles are constructed based on the self-consistently derived accretion rates given
by Illustris, and truncated based on a (Toomre) gravitational stability criterion. Higher densities
resulting from higher accretion rates lead to more extended inner-disk regions. We use an alpha-
disk∗ throughout. It’s worth noting that the inner-disk region (1) has a very similar hardening curve
to GW-emission: τVD,1 ∝ r7/2, versus τgw ∝ r4. In Illustris, post-merger MBH tend to have higher
accretion rates, and thus larger inner-disk regions.

We assume that the disk has a negligible effect on the eccentric evolution of binaries, i.e. [de/dt]VD = 0.
This assumption is made for simplicity. While numerous studies have shown that eccentric evolution
can at times be significant in circumbinary disks (e.g. Armitage & Natarajan 2005; Cuadra et al.
2009a; Roedig et al. 2011), we are unaware of generalized descriptions of eccentricity evolution for
binaries/disks with arbitrary initial configurations. In the analysis which follows, we explore a wide
range of eccentricity parameter space. While a given model may end up being inconsistent with VD
eccentric-evolution, the overall parameter space should still encompass the same resulting GWB
spectra.

• Gravitational Wave (GW) emission (∼ 10−5 pc) hardens binaries at a rate given by Peters
(1964, Eq. 5.6) as,

da

dt
= −64 G3

5 c5
M1 M2 (M1 + M2)

a3 F (e), (2.3)
where the eccentric enhancement,

F (e) ≡
(
1 + 73

24 e2 + 37
96 e4)

(1 − e2)7/2 . (2.4)

In Paper-1 we made the approximation that the eccentricity of all binaries was negligible and thus
F (e) = 1. Here, we include models with non-zero eccentricity, evolved as (Peters 1964, Eq. 5.7),

de

dt
= −304 G3

15 c5
M1 M2 (M1 + M2)

a4

(
e + 121

304 e3)
(1 − e2)5/2 . (2.5)

2.2.3 Gravitational Waves from Eccentric MBH Binaries

Circular binaries, with (rest-frame) orbital frequencies fr, emit GW monochromatically at 2fr, i.e. the
n = 2 harmonic. Eccentric systems lose symmetry, and emit at n = 1 and all higher harmonics, i.e.
fh = n fr (for n ∈ I). The GW energy spectrum can then be expressed as (Enoki & Nagashima 2007,
Eq. 3.10),

dεGW

dfr
=

∞∑
n=1

[
LGW,circ(fh)

τ
f
h(fh, e)
n fh

g(n, e)

]
fh=fr/n

. (2.6)

The GW frequency-distribution function g(n, e) is shown in Eq. 2.19. Equation (2.6) describes the GW
spectrum emitted by a binary over its lifetime, which is used in the semi-analytic GWB calculation (§2.2.3.1).
The total power radiated by an eccentric binary is enhanced by the factor F (e), i.e., LGW(fr, e) = LGW,circ(fr)·
F (e), where the GW luminosity for a circular binary is (Peters & Mathews 1963, Eq. 16),

LGW,circ(fr) = 32
5Gc5 (GM 2πfr)10/3

. (2.7)

∗Where viscosity depends on both gas and radiation pressure, as apposed to a ‘beta-disk’ which depends only
on the gas-pressure. The differences in merger times and coalescing fractions between the alpha and beta models
are negligible. We use the alpha model because it may be more conservative via higher viscosities in the inner-most
disk regions which, while insignificant for increasing the number of merging MBH, could increase GWB attenua-
tion.
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Note that in Eq. 2.6, the relevant timescale is the hardening-time (or ‘residence’-time) in frequency,

τ
f
h ≡

∣∣∣∣ f

df/dt

∣∣∣∣ = 2
3

∣∣∣∣ a

da/dt

∣∣∣∣ ≡ 2
3
τh, (2.8)

which is 2/3 the hardening-time in separation (via Kepler’s law), which we use for most of our discussion
and figures.

The GW strain from an individual, eccentric source can be related to that of a circular source as (e.g.
Amaro-Seoane et al. 2010, Eq. 9)∗,

h2
s (fr) =

∞∑
n=1

h2
s,circ(fh)

(
2
n

)2

g(n, e)
∣∣∣∣
fh=fr/n

. (2.9)

Here, the GW strain from a circular binary is,

hs,circ(fr) = 8
101/2

(GM)5/3

c4 dL
(2πfr)2/3 (2.10)

(e.g. Sesana, Vecchio & Colacino 2008, Eq. 8), for a luminosity distance dL, and a chirp mass M = (M1M2)3/5
/ (M1 + M2)1/5.

Equation (2.9) describes the instantaneous GW strain amplitude from a binary, and is used in the Monte-
Carlo GWB calculation (§2.2.3.2).

The GWB is usually calculated in one of two ways (Sesana, Vecchio & Colacino 2008): either Semi-
Analytically (SA), treating the distribution of binaries as a smooth, continuous and deterministic function
to calculate ∂5nc(M1, M2, z, fr, e)/∂M1∂M2∂z∂fr∂e (Phinney 2001), or alternatively, in the Monte Carlo
(MC) approach, where nc(M1, M2, z, fr, e) is considered as a particular realization of a finite number of
MBHB in the universe (Rajagopal & Romani 1995).

2.2.3.1 Semi Analytic GWB

The GWB spectrum can be calculated from a distribution of eccentric binaries as (Huerta et al.
2015; Enoki & Nagashima 2007, Eq. 3.11),

h2
c(f) = 4G

πc2f

∫
dM1 dM2 dz nc (M1, M2, z)

∞∑
n=1

[
LGW,circ(fr)

τ
f
h

n fr
g(n, e)

]
fr=f(1+z)/n

,
(2.11)

where the summation is evaluated for all rest-frame frequencies with a harmonic matching the observed
(redshifted) frequency bin f . Eq. 2.11 is derived by integrating the emission of each binary over its life-
time, which is assumed to happen quickly (τf

h ≪ τHubble).
Each of the binaries in our simulation is evolved from their formation time (identified in Illustris)

until coalescence. The GWB calculations only include the portions of the evolution which occur before
redshift zero. In our implementation of the Eq. 2.11 calculation, interpolants are constructed for each bi-
nary’s parameters (e.g. frequency, GW strain, etc) over its lifetime which are then used when sampling by
simulated PTA.

2.2.3.2 Monte Carlo GWB

The GWB spectrum can also be constructed as the sum of individual source strains for all binaries
emitting at the appropriate frequencies (and harmonics) in the observer’s past light cone (Sesana, Vecchio

∗Note the factor of (2/n)2 when converting from circular to eccentric systems.
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& Colacino 2008, Eq. 6 & 10),

h2
c (f) =

∫
dz dM

[
d3N

dz dM d ln fr
h2

s (fr)
]

fr=f(1+z)

=
∫

dz dM d2nc

dz dM
dVc

[
fr

dfr
h2

s (fr)
]

fr=f(1+z)
,

(2.12)

for a number of sources N , or comoving number-density nc in a comoving volume Vc.
The differential element of the past light cone can be expressed as (e.g. Hogg 1999, Eq. 28),

dVc(z) = 4π (1 + z)2 c

H0

d2
c(z)

E(z)
dz, (2.13)

for a comoving distance dc = dL/(1 + z), redshift-zero Hubble constant H0, and the cosmological evolution
function E(z) (given in Eq. 2.21). The term fr/dfr = f/df , which results from the definition of the charac-
teristic strain as that over a logarithmic frequency interval, can be identified as the number of cycles each
binary spends emitting in a given frequency interval (see Eq. 2.20).

To discretize Eq. 2.12 for a quantized number of sources (e.g. from a simulation) we convert the inte-
gral over number density, into a sum over sources within the Illustris comoving volume Vill,∫

dz dM ...
d2nc

dz dM
dVc →

∑
ij

...
∆Vij

Vill
, (2.14)

where the summation is over all binaries i at each time-step j. The factor ∆Vij

Vill
≡ Λij represents the num-

ber of MBH binaries in the past light cone represented by each binary in the simulation∗. The volume of
the past light cone represented by Λij depends on the integration step-size, i.e.,

Λij = 1
Vill

dVc(zij)
dzij

∆zij , (2.15)

where ∆zij is the redshift step-size for binary i at time step j. Λij is stochastic, determined by the num-
ber of binaries in a given region of the universe. Alternative ‘realizations’ of the universe can be constructed
by, instead of using Λij itself, scaling by a factor drawn from a Poisson distribution P, centered at Λij .
Thus, to construct a particular realization of the GWB spectrum we calculate,

h2
c (f) =

∑
ij

P(Λij)
∞∑

n=1

[
fr

∆f
h2

s (fr)
(

2
n

)2

g(n, e)

]
fr=f(1+z)/n

. (2.16)

2.2.4 Detection with Pulsar Timing Arrays

To calculate the detectability of our predicted GWB spectra, we use the detection formalism outlined
by Rosado, Sesana & Gair (2015). A ‘detection statistic’† X is constructed as the cross-correlation of PTA
data using a filter which maximizes the Detection Probability (DP) γ. The optimal filter is known to be
the ‘overlap reduction function’ (Finn, Larson & Romano 2009) which, for PTA, is the Hellings & Downs
(1983) curve that depends on the particular PTA configuration (angular separation between each pair of
pulsars). Using the optimal detection statistic, and the noise characteristics of the PTA under considera-
tion, parameters like the signal-to-noise ratio (SNR; and SNR-threshold) or DP can be calculated based on
a GWB. Rosado, Sesana & Gair (2015) should be consulted for the details of the detection formalism but,
for completeness, the relevant equations used in our calculations are included in §2.4.

Following Rosado, Sesana & Gair (2015) and Taylor et al. (2016b) we construct simulated PTA us-
ing published specifications of the constituent pulsars. We then calculate the resulting DP (Eq. 2.30) for

∗Λij is equivalent to the multiplicative factors used in, for example, Sesana, Vecchio & Colacino (2008, Fig. 6)
and effectively the same as in McWilliams, Ostriker & Pretorius (2014).

†i.e. measure of signal strength in PTA (mock) data.

77



www.manaraa.com

GWB Predictions from Illustris MBHB 2.2 - Methods

our model GWB against each PTA, focusing on the varying time to detection. We consider models for all
PTA:

• European∗ (EPTA, Desvignes et al. 2016; Caballero et al. 2016)

• NANOGrav† (The NANOGrav Collaboration et al. 2015),

• Parkes‡ (PPTA, Shannon et al. 2015; Reardon et al. 2016),

• International§ (IPTA, Verbiest et al. 2016; Lentati et al. 2016).

For each array we include an ‘expanded’ model (denoted by ‘+’) including the addition of a pulsar
every X years, where for the individual PTA, X = 1/4, and for the IPTA, X = 1/6 (Taylor et al. 2016b).
All expanded pulsars are given a TOA accuracy of 250 ns, and a random sky location. The public PTA
specifications include observation times for each TOA of all pulsars in the array. We take the first TOA as
the start time of observations for the corresponding pulsar, and use the overall number of calendar days
with TOA measurements¶ to determine the characteristic observing cadence. The cadence from the PTA
data files is assumed to continue for the pulsars added in expansion.

Detection statistics depend on pairs of pulsars. For each pair, we set the observational duration as
the stretch of time over which both pulsars were being observed: Tij = Ti ∩ Tj ; and take the character-
istic cadence as the maximum from that of each pulsar: ∆tij = max(∆ti, ∆tj). The sensitive frequen-
cies for each pair is then determined by Nyquist sampling with ∆fij = 1/Tij , such that each frequency
fijk = 1/Tij + k/∆tij , and f ∈ [1/T, 1/∆t]. In calibrating the λnoise parameter, we take the end time of
observations as the last TOA recorded in the public data files, while for calculations of time to detection,
we start with an end point of 2017/01/01.

Pulsars are characterized by a (white-noise) standard deviation σi in their TOA. For a time interval
∆t, the white-noise power spectrum Pw,i is given by,

Pw,i = 2σ2
i ∆t. (2.17)

Some pulsars in the public PTA data provide specifications for a red-noise term∥ which we also include.
We assume that when red-noise specifications are not provided that they are negligible.

To calibrate our calculations to the more comprehensive analyses employed by the PTA groups them-
selves, we rescale the white noise (σi) of each pulsar by a factor λnoise (the procedure described in Taylor
et al. 2016b). To determine λnoise, we calculate upper-limits on the GWB amplitude Ayr−1,ul (Taylor et al.
2016b, Eq. 4), with a ‘true’ (i.e. injected) GWB amplitude of Ayr−1 = 0.6 × 10−15, and iteratively adjust
λnoise until the calculated Ayr−1,ul matches the published values. The total noise used in our calculations is
then∗∗,

Pi = λ2
noise Pw,i + Pr,i. (2.18)

∗http://www.epta.eu.org/aom/EPTA_v2.2_git.tar
†https://data.nanograv.org/
‡http://doi.org/10.4225/08/561EFD72D0409
§http://www.ipta4gw.org/?page_id=519
¶Grouping TOA by observation day deals with near-simultaneous observations at different frequencies which

are not representative of the true observing cadence.
∥Models for each PTA are: European–Caballero et al. (2016, Eq.3); NANOGrav–The NANOGrav Collabora-

tion et al. (2015, Eq.4); Parkes–Reardon et al. (2016, Eq.4); International–Lentati et al. (2016, Eq.10). Note that
for the red-noise amplitudes included in the IPTA public data release, the frequency f must be given in yr−1, and
the duration T in yr (for Eq.10 of Lentati et al. 2016).

∗∗In the presence of red-noise the power spectrum is frequency dependent, i.e. Pik = Pi(fk), but we suppress the
additional subscript for convenience.
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Medians (Pulsars / Pairs)

Name N Red
σ Dur. Cad.

λnoise[µs] [yr] [day]

European 42 8 6.5 / 6.9 9.7 / 8.2 14 / 20 2.26
NANOGrav 37 10 0.31 / 0.26 5.6 / 2.3 14 / 14 3.72
Parkes 20 15 1.8 / 1.8 15.4 / 9.1 21 / 23 0.1
IPTA0 49 16 3.5 / 3.4 10.8 / 5.8 15 / 23 5.46
IPTA′ 49 27 1.2 / 1.6 12.8 / 8.2 14 / 17 1.0

Table 2.1: Summary of parameters for the individual and International PTA used in our calculations.
The first and second columns give the number of pulsars (N) and the number which include a red-noise
model (Red) in the official specifications. The following three columns—the noise (σ), and observational
duration & cadence—are each given as median value for ‘pulsars/pulsar-pairs’. Durations are those up to
the end-time of each public data set (ranging from 2011 for Parkes, to 2015 for the EPTA). The observ-
ing cadence is calculated based on the total number of days with TOA entries between the first and last
recorded observations. The IPTA0 is based on the official IPTA data release while the IPTA′ is a manual
combination of specifications from each individual PTA data release, without calibrating to any published
upper-limit (i.e. λnoise ≡ 1.0), but using the calibration from the individual PTA.

Detailed specifications of each PTA configuration are included online as JSON files. The basic param-
eters of each individual array and the IPTA are summarized in Table 2.1. The values of λnoise say some-
thing about how consistent the overall noise-parameters are with the upper-limits calculated in our frame-
work. Values of λnoise > 1 suggest that additional noise is required.

The International PTA (IPTA0) requires the largest λnoise, suggesting that either the noise is un-
der estimated or that the calculated upper-limit is sub-optimal—possibly due to systematics in combin-
ing data from not only numerous telescopes, but numerous groups and/or methodologies. To address this
issue we also present our results analyzed against an alternative ‘ IPTA′ ’. The IPTA′ is constructed by
manually combining the TOA measurements from the individual arrays but without re-calibrating. The
total number of pulsars across all PTA is 68, but we only include those from the official IPTA specification
(49) as the additional 19 pulsars produce a ≲ 1% improvement in the resulting statistics.

To construct the IPTA′, white noise parameters are added in quadrature using the λnoise from each
individual PTA. When a pulsar has multiple red-noise models from different groups, we use the model
with the lowest noise power at f = 0.1 yr−1. The red-noise characteristics of the pulsars have a substantial
effect on the resulting detection statistics. Because the IPTA′ model incorporates the red-noise from all
PTA, it ends up being significantly disadvantaged compared to the EPTA (for example) for which only 8
pulsars have red-noise models. To level the playing field, we copy the IPTA′ red-noise models to pulsars
of each individual PTA which do not otherwise include one. Thus the actual number of pulsars using red-
noise models, differs from the values shown in Table 2.1, specifically: our EPTA, NANOGrav, and Parkes
models end up with 21, 16, and 18 pulsars with red-noise, and both IPTA models have 27.

Our models for the expanded versions of the individual PTA and IPTA0 begin adding pulsars after
the end of their public data sets, which end in 2015/01 (EPTA), 2013/11 (NANOGrav), 2011/02 (PPTA),
& 2014/11 (IPTA0). The parameters of the expansion pulsars are low white-noise and zero red-noise,
which may give an unfair advantage, for example, to the PPTA vs. the EPTA by adding roughly 16 low-
noise pulsars by 2015/01. To try to take this into account for the IPTA′+ model, we add 2 pulsars per
year after 2011/02 (when the PPTA data set ends), 4 per year after 2013/11, and finally 6 per year after
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2015/01—the same time at which IPTA0 begins expansion with 6 pulsars per year.
To test our PTA configurations and detection statistics, we reproduce the results of Taylor et al.

(2016b, Fig. 2) for purely power-law GWB spectra. Our detection probabilities for each PTA are shown
in Fig. 2.13. The left column shows expanded (+) arrays, with new pulsars added each year, while the
right column shows the current array configurations. Our Detection Probabilities (DP) are close to those
of Taylor et al. (2016b), but not identical, likely due to differences between our noise scaling-factors λnoise

∗.
Each panel has vertical lines denoting the year in which each PTA reaches 50% (short-dashed) and 95%
DP (long-dashed). For these power-law GWB models at our fiducial Ayr−1 = 0.6 × 10−15 (Paper-1), the
individual PTA reach 95% DP in roughly 2031, 2027 & 2027 for the EPTA+, NANOGrav+ & PPTA+
respectively. The IPTA0+ reaches the same DP at 2029, while IPTA′+ cuts that down to 2025. IPTA0+
performing worse than NANOGrav and Parkes further motivates the usage of the IPTA′+ model. The dif-
ference between static and expanding arrays is quite significant. For example, by 2037, none of the static
PTA models reach 95% DP. This highlights the importance of continuing to observe known pulsars, while
also surveying the sky looking for new ones. Survey programs have been carried out by several large ra-
dio telescopes around the world, including GBT and Arecibo in the US, and their continued efforts and
funding is of critical importance for PTA science.

2.3 Results

2.3.1 Eccentric Evolution

For a given simulation, all binaries are initialized with the same eccentricity and are let to evolve
with dynamical friction (DF), loss-cone (LC) stellar scattering, drag from a circumbinary Viscous-Disk
(VD), and Gravitational Wave (GW) hardening. LC increases initially-nonzero eccentricities, and GW
emission decreases them. In our models we assume DF & VD do not affect the eccentricity distribution.
The upper panels of Fig. 2.1 show the resulting binary eccentricity evolution versus orbital frequency (a)
and binary separation (b) for our entire population of MBHB. Solid lines show median values at each sep-
aration, and colored bands show the surrounding 68%. Binaries initialized to e0 = 0.0 stay at zero, but
the population initialized to only e0 = 0.01 have a median roughly ten times larger at r ∼ 1 pc, and still
e ≳ 0.05 at orbital frequencies of 1 yr−1.

Binaries which are both heavy (M > 109 M⊙) and major (µ > 0.1) tend to dominate the GWB
signal (Kelley, Blecha & Hernquist 2017). The eccentricity evolution of this subset of binaries is shown sep-
arately in panels (c) & (d) of Fig. 2.1. The eccentricities of these systems tend to dampen more quickly
at separations below ∼ 1 pc. In general, this leads to much lower eccentricities at PTA frequencies for the
heavy & major population. In the e0 = 0.95 model, for example, the heavy & major median eccentric-
ity drops below 0.6 by f = 0.1 yr−1 (panel c), whereas it takes until f ∼ 3 yr−1 for the population of all
binaries (panel a). In terms of separation, most of the e0 = 0.95 population has e ≲ 0.5 by r ∼ 10−2 pc,
whereas for all binaries the same isn’t true until r ∼ 10−4 pc. The highest eccentricity model, e0 = 0.99,
behaves somewhat differently, as it tends to in many respects. For e0 = 0.99, binaries pass through most of
the PTA band before their eccentricities are substantially damped in both the overall and heavy & major
groups.

Once binaries begin to approach the PTA sensitive band (f ≳ 10−2 yr−1) the eccentricity distribu-
∗Taylor et al. (2016b) did not publish their λnoise, but they were calculated by marginalizing against a probabil-

ity distribution for Ayr−1 from Sesana (2013b). We simply use a fixed value based on the GWB from our fiducial
MBHB merger model, Ayr−1 = 0.6 × 10−15.
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Figure 2.1: Evolution of eccentricity versus separation (panels a & c) and orbital frequency (panels b
& d) for a variety of initial eccentricities. The upper panels (a & b) show eccentricities for all binaries,
while the lower panels (c & d) show only the heavy (M > 109 M⊙) and major (µ > 0.1) subset which
tend to dominate the GWB. Each band corresponds to 68% of the population, and the central lines to the
medians.
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tions are always monotonically decreasing. At the corresponding separations, GW becomes more and more
dominant to LC, but at the same time, VD can still be an important hardening mechanism. If circumbi-
nary disks can be effective at increasing eccentricity, or if a resonant third MBH were present, eccentric-
ities could still be excited in the PTA regime. Either of these effects may be important for some MBHB
systems, but likely not for the overall population.

In our models, while binary eccentricity is evolved by both LC and GW hardening, the eccentricity
distribution itself only affects the rate of semi-major-axis hardening (i.e. da/dt, Eq. 2.3) by the GW mech-
anism. As eccentricity increases, GW hardening becomes more effective. The hardening time (a/[da/dt])
for all binaries is plotted in the upper panels of Fig. 2.2. The frequency panel (a) has been extended to
show more of the physical picture, with the PTA-relevant regime shaded in grey. The DF regime goes
from large separations down to r ∼ 50 pc, and according to our prescription includes no eccentricity de-
pendence.

The relatively flat portion of the hardening curve between r ∼ 50 pc and r ∼ 2 × 10−2 pc (panel b)
is typically the LC-dominated regime. Ignoring the radial dependence of galactic ρ/σ (density/velocity)
profiles, the hardening rate should scale like τh ∝ a−1 (see Eq. 2.1). The hardening rates in panel b, how-
ever, show the combined binary evolutionary tracks over many orders of magnitude in total-mass and
mass-ratio, flattening the hardening curves. The scaling is more clear for the low-eccentricity models of
the heavy & major subset (panel d) which show more canonical LC hardening rates between r ∼ 10 pc and
r ∼ 1 pc.

Even at these large separations, the hardening timescale is significantly decreased for the highest ini-
tial eccentricities: e0 = 0.95 and especially e0 = 0.99. In these models, GW emission begins to play an im-
portant role in hardening much earlier in the systems’ evolution. The dashed vertical lines in Fig. 2.2 show
the frequency and separation at which GW hardening becomes dominant over DF and LC∗ in 50% of sys-
tems. For e0 = 0.99, GW domination occurs at a few parsecs, largely circumventing the LC regime entirely.
As eccentricity decreases, so does the transition separation. For lower initial eccentricities, e0 ≲ 0.75, the
DF & LC become sub-dominant at a few times 10−2 pc, and the overall hardening rates are hardly distin-
guishable between different eccentricities.

Panels (c) & (d) of Fig. 2.2 show the hardening time for the population of heavy & major binaries.
While very similar to the overall population, the heavy & major binaries are all effectively in the GW
regime at frequencies f ≳ 10−2 yr−1, i.e. the entire PTA band. In the e0 = 0.0 model, binaries in the PTA-
band show a nearly perfect power-law hardening rate from GW-evolution, and eccentricities e0 ≲ 0.75 are
hardly different. In the e0 = 0.95 model, a heightened hardening rate is clearly apparent up to f ∼ 10−1 yr−1.
The e0 = 0.99 model evolves five orders of magnitude faster than e0 = 0.0 at f = 10−2 yr−1, and still more
than two orders faster even at f = 1 yr−1. The e0 = 0.99 model hardens drastically faster than the others
both because of the strong eccentricity dependence of the GW hardening rate (Eq. 2.3) and because the
eccentricity of the e0 = 0.99 population better retains its high values at smaller separations.

At frequencies below 10−3–10−2 yr−1 and lower eccentricity models (e0 ≲ 0.75), the heavy & major
population is LC-dominated, causing sharp turnovers in the their hardening curves which is echoed in the
resulting GWB spectra. In the population of all binaries (panel a) the transition occurs at slightly higher
frequencies. The higher eccentricity models, which transition to GW domination at lower frequencies, do
not show the same break in their hardening rate evolution. The resulting GWB spectra, however, still do
(discussed in §2.3.2).

∗Note that VD can be dominant for an additional decade of frequency or separation, but because the ampli-
tude and power-law index of VD are very similar to that of GW hardening, the transition points plotted are more
representative of a change in hardening rate and/or GWB spectral shape.

82



www.manaraa.com

GWB Predictions from Illustris MBHB 2.3 - Results

10-4 10-3 10-2 10-1 100 101 102 103

Separation [pc]

100

102

104

106

108

1010

H
ar

de
ni

ng
 T

im
es

ca
le

 [y
r]

M> 109M¯  & µ> 0.1

Initial Eccentricities (e0)

0.00 0.01 0.25 0.50 0.75 0.95 0.99

10-4 10-3 10-2 10-1 100 101 102

Orbital Frequency [yr−1]

100

102

104

106

108

1010

H
ar

de
ni

ng
 T

im
es

ca
le

 [y
r]

M> 109M¯  & µ> 0.1

10-4 10-3 10-2 10-1 100 101 102 103

Separation [pc]

100

102

104

106

108

1010

H
ar

de
ni

ng
 T

im
es

ca
le

 [y
r]

10-4 10-3 10-2 10-1 100 101 102

Orbital Frequency [yr−1]

100

102

104

106

108

1010

H
ar

de
ni

ng
 T

im
es

ca
le

 [y
r]

10-11 10-10 10-9 10-8 10-7 10-6
Orbital Frequency[s−1]

10-11 10-10 10-9 10-8 10-7 10-6
Orbital Frequency[s−1]

Figure 2.2: Binary hardening timescale (a/(da/dt)) against orbital frequency (panels a & c) and binary
separation (panels b & d). Note that the frequency axes show an extended range, with the PTA-sensitive
band shaded in grey. The upper panels (a & b) show hardening rates for all binaries, while the lower pan-
els (c & d) show only the heavy & major subset. The dashed vertical lines indicate the radii at which GW-
driven hardening becomes dominant over DF and LC.
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In all of our models, GW hardening is dominant to both dynamical friction and stellar scattering
for the binaries which will dominate GWB production (heavy & major at f ≳ 10−2 yr−1). Viscous drag,
however, tends to be comparable or higher in much of the binary population. Deviations to the power-law
index of hardening rates in the PTA regime are not apparent, however, because VD has a very similar
radial dependence to GW emission∗ (see §2.2.2). Although the GWB spectrum is only subtly affected by
VD, the presence of significant gas accretion in the PTA band is promising for observing electromagnetic
counterparts to GW sources, and even multi-messenger detections with ‘deterministic’/‘continuous’ GW-
sources—those MBHB resolvable above the stochastic GWB (e.g. Sesana et al. 2012; Tanaka, Menou &
Haiman 2012; Burke-Spolaor 2013).

It should be clear from Fig. 2.2 that the hardening timescale is often very long (τh ∼ τHubble) and
varies significantly between binary systems. A substantial fraction of binaries, especially those with lower
total mass and more extreme mass ratios, are unable to coalesce before redshift zero. The presence of sig-
nificant eccentricity at sub-parsec scales can significantly decrease the hardening timescale, increasing the
fraction of coalescing systems overall. The heavy & major subset of binaries, however, already tends to co-
alesce more effectively, and because this portion of the population dominates the GWB, its amplitude due
to varying coalescing fractions is only subtly altered.

2.3.2 Gravitational Wave Backgrounds

2.3.2.1 The Semi-Analytic GWB

The simplest calculation of the GWB assumes that all binaries coalesce effectively, quickly, and purely
due to GW emission. This leads to a purely power-law strain spectrum, hc, GW ∝ f−2/3. Environmental
hardening, however, is required for the vast majority of binaries to be able to coalesce within a Hubble
time†. These additional hardening mechanisms also force binaries to pass through each frequency band
faster than they otherwise would, decreasing the GW energy emitted in that band, and attenuating the
GW background spectrum (e.g. Eq. 2.11, or Ravi et al. 2014).

Non-zero eccentricity increases the instantaneous GW luminosity and decreases the hardening time
(Eq. 2.3). Also, the GW emission from eccentric binaries is no longer produced monochromatically at
twice the orbital frequency, but instead is redistributed, primarily from lower to higher frequencies (Eq. 2.6).
The effects of increased attenuation and the frequency redistribution are shown separately in Fig. 2.3 for
e0 = 0.75. The blue, dotted line shows a power-law spectrum (i.e. GW-only); while the purple, dashed-
dotted line includes attenuation from the surrounding medium (predominantly LC-scattering). The red,
dashed line includes the effects of chromatic GW emission, in addition to attenuation, which shifts the
spectrum to higher frequencies. This is the full, semi-analytic (SA; §2.2.3.1) calculation. The spectral
turnover is produced by the environmental attenuation, while the frequency redistribution slightly in-
creases the amplitude in the PTA-regime (f ≳ 10−2 yr−1).

The GWB strain spectrum is shown for a variety of initial eccentricities in Fig. 2.4. Purely power-
law spectra calculated assuming GW-only evolution are shown in dotted lines, while the full SA calcula-
tion is shown with dashed lines. The power-law spectra show a very slightly increasing GWB amplitude
with increasing eccentricity as more binaries are able to coalesce before redshift zero. For initial eccentric-
ities e0 ≲ 0.5, the GWB spectrum above frequencies f ≳ 10−2 yr−1 are nearly identical. For higher initial

∗This is true for the inner, radiation-dominated, region of the disk where GWB-dominating binaries tend to
reside.

†Even with strong external factors, hardening timescales are still often comparable to a Hubble time, and thus
only a fraction of systems coalesce.
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Figure 2.3: Stochastic Gravitational Wave Background calculated with the Semi-Analytic (SA) method,
showing the effects of large binary eccentricities on the GWB spectrum. A purely power-law model is
shown in the blue dotted line, which includes the masses and redshifts of merger events but assumes all
energy is emitted in GW. The purple dot-dashed line includes the effect of attenuation from environmental
hardening effects. The red dashed line shows the full SA calculation including both attenuation and the
redistribution of GW energy across multiple frequencies. Note that this model uses a large initial eccentric-
ity of e0 = 0.75.
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Figure 2.4: GWB strain spectrum calculate using the Semi-Analytic (SA) formalism for simulations
with a range of initial eccentricities (e0). The dotted lines assume purely GW-driven evolution and no fre-
quency redistribution, and show amplitude increasing slightly with increasing e0—because more systems
coalesce. The dashed lines show the full SA calculation, including both attenuation and the frequency re-
distribution. Note that the power-laws (dotted) are not physically meaningful per se, and are meant as a
reference when interpreting the SA models (dashed). For f ≳ 2 × 10−1 yr−1, the GWB amplitude increases
with increasing e0 until e0 = 0.99, at which point the GWB amplitude is drastically depressed—almost
completely flat—across the PTA band.
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Figure 2.5: GWB from different binary subsets selected by total mass M , and mass ratio µ. The blue
(solid) line shows the total GWB from all binaries, while the red (dashed) line shows the contribution
from heavy & major systems (shown also in Figs. 2.1 & 2.2). Light systems (green, dotted) and light &
minor binaries (purple, dot-dashed) are also shown. The percentages in the legend show the contribution
to the GWB energy at 1 yr−1 (i.e. ∝ h2

c (f = 1 yr−1)) for each subgroup. Here, the heavy & major sub-
group, while only 1% of binaries by number, contributes almost 80% of the GWB energy.

values, the effects of non-zero eccentricity become more apparent. Overall, for all but the highest eccen-
tricities (e0 > 0.9), the effect of non-circular orbits is actually to slightly increase the GWB amplitude
in the PTA frequency band, because of the redistribution of GW energy to higher harmonics. Note that
this is because the spectral turnover is always below the PTA-band in our spectra (also seen in, e.g., Chen,
Sesana & Del Pozzo 2016). If galactic densities are significantly larger than those found in the Illustris sim-
ulations, the environment could continue dominating binary evolution to higher frequencies. If that were
the case, the spectral turnover could be within the PTA band which would lead to chromatic GW emis-
sion decreasing the observable signal. In the supplements §2.4, we include additional information on binary
host-galaxy densities from Illustris.

In the highest eccentricity case (e0 = 0.99; red lines), binaries are still highly eccentric at separations
corresponding to frequencies all the way up to f ∼ 10 yr−1, and the GWB amplitude is drastically dimin-
ished throughout the PTA band. While such high eccentricities may be unlikely (e.g. Armitage & Natara-
jan 2005; Roedig et al. 2011), having some subset of the population maintain high eccentricities into the
PTA band is certainly not impossible (e.g. Rantala et al. 2016). If Kozai-Lidov-like processes from a hi-
erarchical, third MBH were driving the eccentricity (e.g. Hoffman & Loeb 2007; Bonetti et al. 2016), or
the binary were counter-rotating to the stellar core or circumbinary disk (e.g. Sesana, Gualandris & Dotti
2011; Amaro-Seoane et al. 2016), eccentricities could grow much faster than in our results. Better under-
standing what fraction of systems could be susceptible to these processes is an important direction of fu-
ture study.

The contribution the GWB is broken down by subgroups of total mass and mass ratio in Fig. 2.5.
The complete GWB is shown in blue (solid), while the heavy & major subset is in red (dashed), the light
(M < 109 M⊙) in green (dotted), and the light & minor (µ < 0.1) in purple (dash-dotted). The heavy & ma-
jor binaries are only ∼ 1% of the population, but here, in the e0 = 0.75 model, contribute ∼ 80% of the
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Figure 2.6: GWB calculated using the Monte-Carlo (MC) method, for a simulation with initial eccentric-
ities e0 = 0.5. Seven different GWB realizations are shown in gray and black lines, while the median and
one- & two- sigma contours are shown in green. Semi-Analytic (SA) calculations are also shown: purely
power-law in blue (dotted), and full in red (dashed). The high frequency spectrum of the MC calculation
is sharper than that of the SA methods due to quantization of binaries.

GWB energy density at 1 yr−1. In fact, heavy & major systems dominate at all frequencies with a very
similar spectral shape to the overall GWB, with a slight enhancement of GW strain at lower frequencies.
Lower-mass binaries (M < 109 M⊙) contribute less than 10% of the energy (despite being just over 90% of
the population), and systems which are neither heavy nor massive contribute only 1% (∼ 30% of the popu-
lation). Other initial eccentricity models tend to be even more heavy & major dominated (often ∼ 90%).

2.3.2.2 The Monte-Carlo GWB

The Monte-Carlo (MC) approach (§2.2.3.2) to calculating the GWB dispenses with the continuum
approximation for the density of GW sources, thereby allowing for the quantization of MBHB at the same
time as providing a convenient formalism for constructing an arbitrary number of realizations from the
same binary population. The MC GWB is shown in Fig. 2.6, with seven randomly-chosen realizations plot-
ted in gray and black. The median line and one- & two- sigma contours of 200 realizations are shown in
green. For reference, the SA spectra are shown for purely power-law calculations (blue, dotted) and the
full SA (red, dashed). The frequency bins correspond to Nyquist sampling at a cadence ∆T = 0.1 yr, and
total observational-duration T = 24 yr.

The MC GWB differs from the SA one, both in its jaggedness and also in a steeper spectrum at
higher frequencies. The jaggedness is caused by varying numbers of binaries in the observer’s past light
cone (Eq. 2.16)—especially massive ones at lower redshifts. The latter effect is due to binary quantiza-
tion: at high frequencies, where the hardening time is short, there are few MBHB contributing to each
frequency bin. The SA calculation, however, implicitly includes the contribution from fractional binaries,
artificially inflating the GWB amplitude at high frequencies (Sesana, Vecchio & Colacino 2008).

Figure 2.7 shows the GWB for a variety of initial eccentricities, with median lines and one-sigma con-
tours for the MC calculation, along with the full and power-law SA calculations. Both the SA and MC
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Figure 2.7: Monte-Carlo (MC) calculated GWB for a variety of different initial eccentricities (e0). Me-
dian lines and one-sigma contours are shown for the MC case, and both the full (dashed) and power-law
(dotted) SA calculations are also shown. Increasing GWB amplitude with increasing eccentricity is appar-
ent at lower frequencies (∼ 10−1 yr−1, until the spectrum turns over. While the spectral turnover is pro-
duced by environmental interaction, the frequency at which it occurs is increased with rising eccentricity.
At higher frequencies (≳ 2 × 10−1 yr−1), as eccentricity increases, the MC results come closer and closer
to the SA ones due to additional binaries at lower orbital frequencies contribute to higher GW-frequency
bins.

methods show slightly increased GWB amplitudes with increasing eccentricities (except for the highest,
e0 = 0.99 simulation). A more pronounced effect is that the higher the eccentricity, the closer the high-
frequency portion of the MC calculation comes to the purely power-law spectra. The ratio of the MC
GWB (median lines) to SA GWB is shown explicitly in Fig. 2.14. Higher eccentricities mean that GW
energy from binaries at lower orbital-frequencies are deposited in higher GW-frequency bins. This means
that overall, more binaries are contributing to each of the higher frequency bins, reducing the effect of
MBHB quantization, and thus bringing the MC results closer in line to the SA models. Finite-number
effects at high frequencies are also remediated by increased numbers of coalescing systems, as is the case
for very large LC refilling fractions (Frefill), for example, shown in Figs. 2.15 & 2.16.

2.3.3 Pulsar Timing Array Detections

2.3.3.1 Eccentric Binary Evolution

Detection probability versus time are shown for eccentric-evolution models in Fig. 2.8 using expanded
PTA configurations. Averages and standard deviations over 200 MC realizations are plotted. Ignoring
the highest eccentricity case (e0 = 0.99), for the moment, the variation between different eccentricities is
≲ 20% in DP, and generally ∼ 2 yr at a fixed value. The different DP growth curves are quite similar be-
tween PTA, with DP tending to be higher for higher eccentricities between e0 = 0.0 and e0 = 0.75. Not
surprisingly, the e0 = 0.99 model is an outlier in DP as in binary evolution. In this extreme case the GWB
is effectively undetectable for all PTA.

The PTA differ in their response to the e0 = 0.95 simulations depending on their frequency sensitivi-
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Figure 2.8: Detection Probability (DP) versus time for eccentric evolution models with different initial
eccentricities (e0, colors) and different PTA (rows). The lines and error bars are averages and standard de-
viations over 200 MC realizations. Currently, in 2017, we find detection probabilities are below 20% for all
official PTA, but reach 95% between about 2025 and 2032. Higher eccentricities tend to be slightly more
detectable, until e0 > 0.75 where the spectral turnover takes a toll on the low-frequency GWB amplitude.
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Figure 2.9: Time to reach a 95% DP versus initial eccentricity (e0) of MBH binaries. Each (expanded,
‘+’) PTA is shown with the average and standard deviation of 200 MC realizations. While the official
IPTA0 specification lags behind Parkes and NANOGrav, the more optimistic IPTA′ model reaches 95%
DP almost two years earlier.

ties. Longer observing durations mean PTA are able to detect lower frequencies, and the lowest accessible
frequency bins are the most sensitive (see, e.g., Moore, Taylor & Gair 2015). Pulsars (and PTA) with the
longest observing durations (i.e. Parkes) are most sensitive to the GWB spectral turnover accentuated in
the high eccentricity models. As observing time increases, however, sensitivity increases at all frequencies,
and the addition of short duration (and low noise) expansion pulsars boosts high-frequency sensitivity. Af-
ter a sufficient observing time, the high frequency portion of the GWB spectrum, where e0 = 0.95 is high-
est (see Fig. 2.7), gains enough leverage for its DP to overtake that of lower eccentricities.

In Fig. 2.8, the IPTA0+ doesn’t perform as well as Parkes+ at early times. This is due both to I)
the differing noise calibrations—the IPTA0’s white-noise is pushed significantly higher than Parkes to
match the observed upper-limits, as well as, II) the specifications for each individual PTA not quite match-
ing those included in the IPTA public specifications. Both of these factors motivate our inclusion of the
IPTA′ model, which has a higher DP than Parkes, even at early times, as expected. We are optimistic
that future IPTA results and data releases will show even greater improvements than suggested by those
of the initial IPTA.

Figure 2.9 shows times to reach 95% DP versus initial eccentricity for each PTA. Overall, time to
detection tends to improve slightly with increasing eccentricity as it increases the GWB amplitude in the
mid-to-upper PTA band. Differences between eccentricities, however, tend to be comparable or smaller
than the variance between MC realizations. For very high eccentricities, e0 > 0.75, the time to detection
again increases as the GWB spectral turnover becomes ‘visible’ to PTA, and the signal is diminished.
While the e0 = 0.99 models never reach 95% DP in our results, additional simulations of a ‘rapid’ IPTA′+
model, where expansion pulsars have a cadence of 2 days (see §2.4, ‘ IPTA′

rap ’), are able to reach DP
∼ 50% by 2032. Even in the highest eccentricity model with e0 = 0.99, detection prospects for individ-
ual, deterministic sources may not be affected quite as strongly. We are currently exploring single source
predictions from our models, to be presented in a future study.
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2.3.3.2 Circular Binary Evolution

Detection probability versus time for circular evolution models with a variety of loss-cone refilling
parameters (Frefill) are shown in Fig. 2.10. Recall that a low, ‘steady-state LC’ corresponds to Frefill = 0.0,
and a highly effective, ‘full LC’ to Frefill = 1.0. Overall a similar range of durations are required for compa-
rable DP, but the circular models are systematically harder to detect, taking roughly 2 years longer. This
is not surprising as the eccentric models assume a full LC, and increasing eccentricity tends to further en-
hance the GWB amplitude in the PTA band. In general, higher Frefill lead to higher DP after a fixed time.
The circular, full LC, tends to have a slightly lower DP as the attenuation and spectral turnover from stel-
lar scattering take effect, analogous to the highest eccentricities (see, e.g., Fig. 2.15). The IPTA′+ model
shows a slight improvement in time to detection between Frefill = 0.8 and Frefill = 1.0, suggesting that its
high-frequency sensitivity is able to win out.

Figure 2.11 summarizes the circular-evolution times to detection for each PTA versus Frefill (solid
lines). Overplotted are the eccentric-evolution times to detection (dashed lines, upper x-axis) for com-
parison. Based on these trends, a population of MBHB with very high LC scattering efficiency (Frefill ∼
0.8 − 1.0) and intermediate eccentricities 0.5 < e0 < 0.8 would be the easiest to detect.

91



www.manaraa.com

GWB Predictions from Illustris MBHB 2.3 - Results

2018 2020 2022 2024 2026 2028 2030 2032
Time [yr]

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
Pr

ob
ab

ili
ty

IPTA′+

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
Pr

ob
ab

ili
ty

IPTA0+

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
Pr

ob
ab

ili
ty

Parkes+

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
Pr

ob
ab

ili
ty

NANOGrav+

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
Pr

ob
ab

ili
ty

European+

Frefill

0.00
0.20
0.40
0.60
0.80
1.00

Figure 2.10: DP versus time for circular evolution models with different LC efficiencies (Frefill, colors)
and different expanded PTA (rows). These growth curves behave very similarly to those of the eccentric
models, but generally take ∼ 2 yr longer to reach the same DP. There is also a stronger trend across Frefill

compared to e0, with Frefill = 0.0 reaching the same DP ∼ 2 yr slower than for Frefill ∼ 0.8 – 1.0.
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Figure 2.11: Time to reach a 95% DP versus LC refilling fraction (Frefill; solid lines) for circular binary-
evolution models. The times to detection for varying eccentricity models (from Fig. 2.9) are overplotted
(dashed lines) for comparison. Averages and standard deviations are shown. Varying Frefill has a pro-
nounced effect on detection times, with more effective scattering (larger Frefill) models taking less time
to observe. Because the eccentric evolution models assume a full loss-cone, the Frefill < 1.0 models tend to
take longer to be detected.

2.4 Conclusions

This paper has focused on plausible detections of a stochastic Gravitational Wave Background (GWB)
using Pulsar Timing Arrays (PTA). We have expanded on the Massive Black-Hole (MBH) merger models
presented in Kelley, Blecha & Hernquist (2017) based on the Illustris simulations. We have added a model
for eccentric binary evolution assuming ‘full’ Loss-Cone (LC) stellar scattering, in addition to our existing
prescriptions for dynamical friction, stellar scattering with a variety of LC efficiencies (Frefill), viscous drag
from a circumbinary disk, and Gravitational Wave (GW) emission. We have run sets of simulations with
a variety of LC efficiencies and initial (at the start of stellar scattering) eccentricities. The MBH binary
evolution produced by our models is explored along with Monte-Carlo (MC) realizations of the resulting
stochastic GW Background (GWB) spectra. Using parametrized models of currently operational PTA,
and their future expansion, we calculate realistic prospects for detections of the GWB.

The presence of non-zero eccentricity causes two distinct effects to MBH Binary (MBHB) evolution
and their GW spectra. First, increased eccentricity causes faster GW-hardening and thus more binary
coalescence, but there is additional attenuation of the GWB spectrum and a stronger spectral turnover at
low frequencies. Second, while circular binaries emit GW at only twice the orbital frequency (the n = 2
harmonic), eccentric binaries also emit at all higher harmonics (and the n = 1). The total GW energy
released remains the same, but the overall effect is to move GW energy from lower to higher frequencies
(Fig. 2.3).

GWB spectra constructed using a Semi-Analytic (SA) calculation (Fig. 2.4) show that the ampli-
tude (Ayr−1) of the GWB near the middle of the PTA band (f ∼ 1 yr−1) tends to increase with increasing
eccentricity up to e0 = 0.95. This is due primarily to the first eccentric effect: with hardening more ef-
fective, the number of binaries coalescing by redshift zero increases. At lower frequencies, environmental
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effects—specifically stellar scattering—produce a strong turnover in the GWB spectrum. Even moderate
eccentricities begin to increase the frequency at which this turnover occurs because of the second eccentric
effect. Unless the population of binaries dominating the GWB have very high eccentricities (e ≳ 0.8), the
spectral turnover remains below the PTA sensitive band (f ≲ 0.02 yr−1).

The location of the spectral turnover in our models differs from those predictioned by Ravi et al.
(2014) who see the turnover at frequencies as high as f ∼ 10−1 yr−1. The location of the turnover de-
pends on the strength of environmental factors, and thus galactic density profiles. If the stellar densities
of massive-MBHB host-galaxies are higher than predicted by Illustris, the turnover could occur at PTA-
observable frequencies, regardless of (or exaggerated by) eccentricity distribution. If the turnover does ex-
ist in the current PTA band, it could hurt detection prospects. At the same time, observations of such a
turnover would be uniquely indicative of environmental interactions, while observations of the GWB ampli-
tude overall are highly degenerate between cosmological factors (i.e. the rate of binary formation) and en-
vironmental factors (determining the rate of binary coalescence). Currently PTA upper limits of the GWB
are still entirely consistent with our results, and thus are unable to constrain or select between them.

GWB spectra constructed using the MC calculation (Fig. 2.7), which should resemble real signals,
tend to have much steeper strain spectra than −2/3 at current PTA frequencies (f ≳ 0.1 yr−1). This is be-
cause the number of binaries in each frequency bin becomes small, and binary quantization must be taken
into account. MC realizations reveal an interesting corollary to the redistribution of GW energy: with non-
zero eccentricity, a larger number of binaries at lower orbital-frequencies contribute to the GWB signal at
higher observed-frequency bins. This softens the effect of binary quantization and the GWB spectra tend
to come closer and closer to a −2/3 spectral index with increasing eccentricity (Fig. 2.14)—thus producing
higher Ayr−1 . For example, the e0 = 0.5 & e0 = 0.95 models have Ayr−1 , 2 & 3 times larger than that of
the e0 = 0.0 model.

To calculate realistic detection statistics, we use parametrized version of each operational PTA: the
European (EPTA), NANOGrav, Parkes (PPTA), and International (IPTA; a joint effort of the individual
three). For the IPTA we consider both the public data specifications, IPTA0; in addition to a more opti-
mistic, manual combination of the individual groups, IPTA′. Overall, our models for NANOGrav, Parkes,
and IPTA0 each behave comparably, reaching 95% detection probability (DP) between 2026 and 2030,
and the EPTA following 2 – 4 years later. The IPTA′ model noticeably outperforms the others, reaching
95% DP between 2024 and 2026. High cadence observations of IPTA′ pulsars can further decrease time-
to-detection by another ∼ 2 years. Moderately high eccentricities (0.5 ≲ e0 ≲ 0.8) tend to produce the
largest GWB amplitudes in the PTA band. The eccentricity models used here assume a full loss-cone (LC;
Frefill ≈ 1.0), and thus circular evolution models which decrease the LC refilling efficiency tend to have
lower GWB amplitudes, and longer times to detection by up to ∼ 2 years. If galactic-nuclear stellar densi-
ties are significantly higher than suggested by Illustris, and the LC is also nearly full, then attenuation of
the GWB spectrum could increase times to detection.

Increased eccentricity tends to increase the GWB amplitude, and thus detection prospects. In the
most extreme e0 = 0.99 model, however, the signal is so drastically diminished that detections seem un-
likely within 20 years in all but the high-cadence IPTA model. While eccentricities as high as 0.99 may
not be representative of the overall population of binaries, mechanisms which can preferentially drive
more massive systems to higher eccentricities (e.g. counter-rotating stars/gas, Khan, Just & Merritt 2011;
Amaro-Seoane et al. 2016, or three-body resonances) should be further studied. Varying the eccentricity
distribution of binaries has a strong effect on the strain spectral-index of the GWB at high frequencies
(f ≳ 1 yr−1). While PTA are less sensitive at higher frequencies, eventual observations with high signal-
to-noise could be used to constrain the underlying binary eccentricity distribution. The true eccentricity
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distribution will also affect the prospects for observations of individual, resolvable binaries (‘determinis-
tic’/‘continuous’ sources)—a study of which is currently in progress.

As discussed above, the high frequency portion of the GWB spectrum that PTA will eventually ob-
serve is strongly influenced by individual MBHB sources. In effect, the high frequency portion of the spec-
trum is no longer a ‘background’. It has been shown that this leads to non-Gaussian signal statistics (Ravi
et al. 2012) which are at odds with the assumptions of the detection statistics we use. Recently, Cornish
& Sampson (2016) have found the standard analyses to be robust against small numbers of GW sources.
None the less, if this effect were to systematically decrease GWB detection probabilities, it is likely the
effect would be minor because: 1) detection probability is primarily driven at low-frequencies where indi-
vidual sources are much less important; and 2) the Monte Carlo realization of the spectra we construct
should be representative of variations in the GW background (neglecting single-sources), and thus our DP
and time-to-detection error bars should still be representative.

For a given PTA configuration, the differences in times-to-detection for varying GWB model param-
eters are at most a few years. This result is promising as it suggests that, despite uncertainties in the
underlying physical processes of binary mergers, the expectation of GWB detections in the near future
remains robust. At the same time it begs the question, ‘will PTA be able to discern between different
models in their observations?’ Based only on the overall GWB amplitude (or equivalently the time-to-
detection), only a mixed measurement of the overall merger process and the typical MBH binary mass dis-
tribution will be constrained. The different hardening models are largely degenerate in the overall GWB
amplitude they predict, especially when taking into account uncertainties in cosmological factors—most
notably the true, unbiased distribution of MBH masses (e.g. Shen et al. 2008; Shankar et al. 2016)—which
is outside of the scope of this study∗.

Once PTA have detected the GWB, and signal-to-noise continues to grow, the shape of the GWB
will be measured which encodes very detailed information about the merger process and typical MBH en-
vironments (e.g. Taylor, Simon & Sampson 2017; Chen et al. 2017). The strength of the (low-frequency)
spectral turnover is determined by the MBHB coupling to their local stellar environments, and its location
is additionally effected by the eccentricity distribution of binaries. The (high-frequency) spectral-index,
however, measures the number of sources contributing to the GWB, and thus the underlying eccentricity
distribution. In the ideal, high signal-to-noise regime, the spectral index will determine typical binary ec-
centricities which can then be disentangled from the stellar coupling, measured from the spectral turnover.
With eccentricity and the loss-cone constrained, the typical masses of merging MBHB can then be inferred
from the overall GWB amplitude.

Low frequency sensitivity, established by long observing baselines, tends to drive increases in de-
tection probability. Still, we find that including short cadence observations to maintain or improve high
frequency sensitivity can make a noticeable difference in detection prospects, especially for the most ex-
treme hardening and eccentricity models (in which the GWB spectra turn over at low frequencies). Re-
gardless of cadence, we find that the continued addition of pulsars monitored by PTA is essential for a de-
tection to be made within the next 20 years. Across a wide range of specific configurations, and even with
pessimistic model parameters, if PTA continue to expand as they are, GWB detections are highly likely
within about 10 years.

∗Examining the effects of varying Illustris MBH evolution and masses is being examined. The MBH population
from Illustris—especially at the high-mass end which most strongly effects the GWB—is tightly constrained by the
M-σ relation and AGN luminosity function which are both accurately reproduced (Sijacki et al. 2015).
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Supplemental Material

Additional Equations

The GW frequency distribution function can be expressed as (Peters & Mathews 1963, Eq. 20),

g(n, e) ≡ n4

32

([
G1

]2 +
[
1 − e2] [

G2
]2 + 4

3n2

[
Jn(ne)

]2
)

,

G1(n, e) ≡ Jn−2(ne) − 2eJn−1(ne) + 2
n

Jn(ne) + 2eJn+1(ne) − Jn+2(ne),

G2(n, e) ≡ Jn−2(ne) − 2eJn(ne) + Jn+2(ne).

(2.19)

Here Jn(x) is the n’th Bessel Function of the first kind. The sum of all harmonics,
∑∞

n=1 g(n, e) = F (e),
where F (e) is defined in Eq. 2.4.

The observed, characteristic strain from a set of individual sources is (e.g. Rosado, Sesana & Gair
2015, Eq. 8),

h2
c =

∑
i

h2
s,i

fi

∆f
≈

∑
i

h2
s,i fi T, (2.20)

where the second equality assumes that frequency bins are determined by the resolution corresponding to
a total observational duration T .

The cosmological evolution function is (Hogg 1999, Eq. 14),
E(z) ≡

√
ΩM (1 + z)3 + Ωk (1 + z)2 + ΩΛ, (2.21)

for z the redshift, and ΩM, Ωk & ΩΛ the density parameters for matter, curvature and dark-energy.

Detection Formalism

In what follows, the GWB signal is characterized by a Spectral Energy Density (SED),

Sh = h2
c

12π2f3 , (2.22)

and the prediction/model SED is denoted as Sh0. In all of our calculations, we use a purely power-law
GWB spectrum for Sh0 with an amplitude of Ayr−1 = 10−16. Each pulsar i is characterized by a noise
SED Pi (Eq. 2.18).

PTA detection statistics typically rely on cross-correlations between signals using an ‘overlap reduc-
tion function’ (the Hellings & Downs 1983, curve),

Γij = 3
2

γij ln (γij) − 1
4

γij + 1
2

+ 1
2

δij (2.23)
where,

γij = 1
2

[1 − cos(θij)] , (2.24)
for an angle between pulsars i and j, θij .

We employ the ‘B-Statistic’ from Rosado, Sesana & Gair (2015), constructed by maximizing the
statistic’s SNR—defined as the expectation value of the statistic in the presence of a signal,

µB1 = 2
∑

k

∑
ij

Γ2
ij Sh Sh0

(Pi + Sh0) (Pj + Sh0) + Γ2
ij S2

h0
, (2.25)

divided by the variance of the statistic also in the presence of a signal,

σ2
B1 = 2

∑
k

∑
ij

Γ2
ij S2

h0
[
(Pi + Sh) (Pj + Sh) + Γ2

ij S2
h

][
(Pi + Sh0) (Pj + Sh0) + Γ2

ij S2
h0

]2 , (2.26)
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i.e. S/NB ≡ µB1/σB1, as apposed to the variance in the absence of a signal,

σ2
B0 = 2

∑
k

∑
ij

Γ2
ij S2

h0Pi Pj[
(Pi + Sh0) (Pj + Sh0) + Γ2

ij S2
h0

]2 . (2.27)

The SNR can then be expressed as,

S/N2 = S/N2
B = 2

∑
k

∑
ij

Γ2
ij S2

h

PiPj + Sh (Pi + Pj) + S2
h

(
1 + Γ2

ij

) , (2.28)

which is only meaningful compared to the threshold-SNR for a particular false-alarm probability (α0) and
DP-threshold (γ0),

S/NT
B =

√
2

[
σ0

σ1
erfc−1 (2α0) − erfc−1 (2γ0)

]
. (2.29)

The SNR can be circumvented altogether by considering the measured DP,

γB = 1
2

erfc
(√

2 σ0erfc−1 (2α0) − µ1√
2 σ1

)
, (2.30)

which is the primary metric we use throughout our analysis of PTA detections.

Host-Galaxy Densities in Illustris

The point at which two MBH come within a smoothing length of one another is identified in Illustris,
and density profiles are calculated for the host galaxy at that time. The profiles are used to calculate the
environmental hardening rates which then determine the GWB spectra. In particular, the stellar densities
strongly affect the location of the spectral turnover through stellar scattering. Because the location of the
spectral turnover is especially important for future detections of the GWB, we provide some additional
details on the stellar environments here.

To calculate density profiles, we average the density of each particle type (star, dark matter, and gas)
in radial bins. Because Illustris is only able to resolve down to 10s–100s of parsec scales, we extrapolate to
smaller radii with power-law fits to the eight inner-most bins∗. Fig. 2.12 shows the distribution of stellar
densities at 10 pc (interpolated or extrapolated as needed) in the upper-panel†, and power-law indices in
the lower-panel. The overall population of binaries are shown in grey (dashed), in addition to the heavy
(M > 109 M⊙) subset in blue, and heavy & major (µ > 0.1) mass-ratio subset in red. There is a roughly
100 times increase in typical stellar densities between heavy systems and overall host-galaxies, but no no-
ticeable change when further selecting by mass-ratio. While the heavy subset constitutes less than 10% of
systems, they contribute ∼ 90% of the GWB amplitude (see, Paper-1).

The median power-law index for the inner stellar density profiles is ∼ −0.4. For comparison, at small
radii an Hernquist (1990) profile corresponds to −1, and −1.5 produces a surface-density distribution that
resembles a de Vaucouleurs (1948) profile (Dehnen 1993). At the same time, many massive galaxies (com-
parable to our host galaxies) have flattened ‘cores‘ in their stellar density profiles (e.g. Faber et al. 1997;
Lauer et al. 2007) and it has long been proposed that these cores could be explained by dynamical scour-
ing from MBH binaries (e.g. Quinlan & Hernquist 1997; Volonteri, Madau & Haardt 2003). Both com-
putationally and observationally, inner density profiles in the ‘hard’ binary regime (typically r ≲ 10 pc)
are very difficult to resolve. It is thus unclear how accurate these profiles are. While they may be realis-
tic models, some of the flattening in the inner regions may be due in part to numerical effects (e.g. grav-
itational softening in the force calculations) or the known, over-inflated radii of some galaxies in Illustris

∗Restricted to those which contain at least four particles each.
†We choose 10 pc as it is near typical spheres of influence (Rinfl) & hardening radii (Rh) for our systems, obser-

vational resolution-limits for nearby galaxies, and usually just beneath Illustris resolution-limits.
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Figure 2.12: Upper-panel: distribution of stellar densities at 10 pc for Illustris galaxies hosting MBH bi-
naries. For galaxies in which 10 pc is unresolved, the density is calculated from power-law fits to the inner-
most (resolved) regions. The dashed grey lines show the entire population of binary host galaxies, while
the blue lines show hosts of heavy (M > 109 M⊙) binaries, and red the heavy and major (µ > 0.1) binaries.
Each population is plotted fractionally, but note that heavy binaries constitute ∼ 7% and heavy & major
∼ 1% of all binaries respectively. Vertical lines indicate the median value of each subset.

(Snyder et al. 2015; Kelley, Blecha & Hernquist 2017).
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Figure 2.13: Detection Probability (DP) for purely power-law GWB spectra exploring different intrinsic
GWB amplitudes over different observation durations for each PTA. The left column shows the expanded
(‘+’) configurations where new pulsars are added each year, while the right column shows the static con-
figurations with only the current number of pulsars. The IPTA0 is the official specification for the Interna-
tional pulsar timing array, while the IPTA′ is a more optimistic, manual combination of the specifications
for each of the three individual PTA (see §2.2.4). The horizontal, dashed grey lines show the GWB ampli-
tude from our fiducial model: Ayr−1 = 0.6 × 10−15, and the vertical, dashed orange lines show the time at
which each configuration reaches DP = 50% (short-dashes) and DP = 95% (long-dashes) for the fiducial
amplitude. For a power-law spectrum at the fiducial amplitude, we expect IPTA′+ to reach 50% & 95%
DP in about 3 & 8 years (∼ 2020 & ∼ 2025) respectively. Without expansion, the IPTA′ reached 50% DP
in about 6 years (∼ 2023), and does not reach 95% DP within 20 years.
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Figure 2.14: Ratio of the (median) MC-calculated GWB to that of the SA calculation. Binaries at
higher eccentricities contribute more GW energy to higher-harmonics above their orbital frequency. This
causes the number of sources contributing at higher-frequencies to increase with increasing eccentricity,
decreasing the effects of MBHB quantization.
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Figure 2.15: Monte-Carlo (MC) calculated GWB for a variety of different LC refilling fractions (Frefill),
with median lines (solid) and one-sigma contours shown. Both the full (dashed) and power-law (dotted)
SA models are also plotted. More efficient LC refilling means more binaries coalesce, causing the GWB
amplitude to increase. An always full LC causes increased attenuation at lower frequencies: apparent at
f ≲ 0.1 yr−1. The steepening of the spectral index at higher frequencies due to finite-number effects is also
apparent, but for Frefill >= 0.8, the effect is somewhat remediated.
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Figure 2.16: Ratio of the (median) MC-calculated GWB to that of the SA calculation, for zero-
eccentricity and a variety of LC refilling fractions (Frefill). Finite-number effects, from few binaries in each
bin, cause the strong deviation between Semi-Analytic (SA) and MC calculations at higher frequencies.
This effect is somewhat alleviated by effective LC refilling (Frefill >= 0.8) where the total number of coa-
lescing binaries is increased.

International PTA Models and Time-to-Detection Sensitivities

In this section we discuss different aspects of models for the International PTA. The IPTA0 model is
based on the official, public IPTA data release (Verbiest et al. 2016). Throughout this paper we have also
focused on the IPTA′ model (discussed in §2.2.4), which is a manual combination of the public data sets
from each of the three individual PTA. Table 2.1 shows a summary of the differences between these pri-
mary PTA models. The time at which PTA will make detections depends sensitively on how they expand:
how rapidly they add new pulsars to the arrays, and what the timing parameters of those pulsars are. We
use ‘expanded’ PTA models (denoted with a ‘+’) to account for this growth. The IPTA′+ model gradually
increases the rate of expansion from 2011 to 2015, to account for the staggered ends of the individual PTA
data sets. Initially the IPTA′+ expands by 2 pulsars per year (after 2011), and finally by 6 per year (after
2015). Here, we also introduce a IPTA′

1+ model which does not expand at all until after 2015, at which
point it adds 6 pulsars per year. Finally, we also show a model which uses the same expansion schedule as
IPTA′+, but in which the pulsars added have a rapid cadence of 2 days, called IPTA′

rap+.
Figure 2.17 shows detection probability for different purely power-law GWB amplitudes for the differ-

ent IPTA models. The IPTA0 and IPTA′
1 differ in the overall pulsar parameters (noise, cadence, etc). In

the expanded cases, the differences in IPTA0+ and IPTA′
1+ models lead to differences of 4 & 2.5 years to

reach 50% & 95% DP respectively for our fiducial amplitude of Ayr−1 = 0.6 × 10−15. In the unexpanded
models the difference is even more pronounced where by 2037 the IPTA0 hardly reaches 50% DP for an
amplitude of Ayr−1 = 10−15, while IPTA′

1 reaches 50% DP for Ayr−1 = 0.6 × 10−15 in ∼ 2023.
The IPTA′

1+, IPTA′+, and IPTA′
rap+ models differ in only their expansion specifications so their

detection probabilities in the unexpanded configurations are identical. The expanded versions however
differ notably. IPTA′

1+ vs. IPTA′+ (expanding after 2015 vs. gradually increasing expansion starting in
2011) differ in time to detection by ∼ 1.5 yr for both 50% and 95% DP (again at Ayr−1 = 0.6 × 10−15).
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Figure 2.17: Detection probability for purely power-law GWB spectra of varying amplitudes versus ob-
serving time. Shown are the four different International PTA configurations discussed above, with differ-
ences in the pulsar characteristics (IPTA0 versus the other models) and different expansion specifications
for adding pulsars (IPTA′

1+, IPTA′+, and IPTA′
rap+).
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Figure 2.18: Time to detection versus initial eccentricity for the same four International PTA configura-
tions discussed above. Differences in pulsar characteristics (most notably noise properties) and expansion
prescriptions yield a 6 year range in times to detection.

Going from the IPTA′+ model to the IPTA′
rap+ model (decreasing the observing cadence of added pulsars

from every ∼ 14 days to every 2 days) further decreases the time to detection by 1 & 2 years for 50% and
95% DP.

Figure 2.18 shows time to detection (at 95% DP) versus initial eccentricity for the full GWB calcu-
lation. Overall, differences between IPTA models lead to a 6 year range of possible times-to-detection for
the same GWB spectra. This highlights 1) the importance of the red-noise characterization of pul-
sars, which often disagree significantly between different PTA but for the same pulsar; 2) that the expan-
sion prescriptions we are using are ad hoc, and updates from the individual PTA and especially the
IPTA on their current data sets are very important moving ahead; and 3) that higher cadence
observations (i.e. more telescope time) will make a noticeable improvement in time to detec-
tion (and likely how quickly SNR will grow after detection) even without consider the benefits to noise
characterization.
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Single Sources in the Low-Frequency

Gravitational Wave Sky: properties and
time to detection by pulsar timing arrays

This thesis chapter originally appeared in the literature as
Luke Zoltan Kelley, Laura Blecha, Lars Hernquist, Alberto Sesana, Stephen R. Taylor
MNRAS, in press. arXiv:1711.00075

abstract

We calculate the properties, occurrence rates and detection prospects of individually re-
solvable ‘single sources’ in the low frequency gravitational wave (GW) spectrum. Our

simulations use the population of galaxies and massive black hole binaries from the Illustris
cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the
binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, vary-
ing red-noise models, we calculate plausible detection prospects for GW single sources and the
stochastic GW background (GWB). Contrary to previous results, we find that single sources
are at least as detectable as the GW background. Using mock PTA, we find that these ‘fore-
ground’ sources (also ‘deterministic’/‘continuous’) are likely to be detected with ∼ 20 yr total
observing baselines. Detection prospects, and indeed the overall properties of single sources,
are only moderately sensitive to binary evolution parameters—namely eccentricity & environ-
mental coupling, which can lead to differences of ∼ 5 yr in times to detection. Red noise has
a stronger effect, roughly doubling the time to detection of the foreground between a white-
noise only model (∼ 10 – 15 yr) and severe red noise (∼ 20 – 30 yr). The effect of red noise
on the GWB is even stronger, suggesting that single source detections may be more robust.
We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr−1, and are
much less sensitive to the continued addition of new pulsars to PTA.

3.1 Introduction

Pulsar timing arrays (PTA) can measure gravitational waves (GW) by precisely measuring the ad-
vance and delay in pulses from galactic millisecond pulsars (Hellings & Downs 1983). The absence of de-
viations in the timing of a single pulsar can be used to place constraints on the presence of GW signals
(Estabrook & Wahlquist 1975; Sazhin 1978; Detweiler 1979; Bertotti, Carr & Rees 1983; Blandford, Ro-
mani & Narayan 1984) while the cross-correlation of timing data from an array of pulsars can be used to
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Figure 3.1: Five realizations of the low-frequency GW sky are shown from our models based on black
holes from the Illustris simulations. The GW spectrum is separated into the loudest individual sources per
frequency-bin (circles) and the remaining ‘background’ of all other systems (lines). Single sources which
are louder than the background are highlighted (black circles), and constitute the GW ‘foreground’. The
power-law GWB spectrum (Eq. 3.1), assuming a continuum of sources evolving purely due to GW emis-
sion is shown with the dotted grey line.

directly measure metric deviations (Foster & Backer 1990; Jenet et al. 2005; Yardley et al. 2011; Demor-
est et al. 2013). The expected sources of detectable GW in the low-frequency PTA regime (f ∼ 1 yr−1 ∼
10 nHz) are massive black hole binaries (MBHB; Mtot ∼ 106 − 1010 M⊙) in stable orbits, typically millions
of years before coalescence (Rajagopal & Romani 1995; Wyithe & Loeb 2003; Jaffe & Backer 2003; Sesana
et al. 2004; Enoki et al. 2004).

Three independent PTA are in operation: the European (EPTA, Kramer & Champion 2013; Desvi-
gnes et al. 2016), NANOGrav (McLaughlin 2013; The NANOGrav Collaboration et al. 2015), and Parkes
(PPTA, Manchester et al. 2013; Reardon et al. 2016). The International PTA (IPTA, Hobbs et al. 2010;
Verbiest et al. 2016) is a collaboration between all three which uses their combined data to boost sensi-
tivity. Prospects for GW detection by PTA depend sensitively on the continued discovery of additional,
low-noise, millisecond pulsars to incorporate into the networks (e.g. Taylor et al. 2016b). Additionally, as
observing baselines on existing pulsars increase, the presence of red-noise in pulsar timing residuals can
have ever increasing and more dominant effects. The source of red-noise, or even the relative contribution
of astrophysical versus instrumental origins, is unclear (see, e.g. Caballero et al. 2016).

The low-frequency GW sky can be classified in terms of a stochastic GW Background (GWB)—the
superposition of many unresolved GW sources; and deterministic GW sources, where individual binaries
are resolvable above the background. We refer to these resolvable single sources as the GW Foreground∗

(GWF). Figure 3.1 shows five randomly selected realizations of GW signals from our models, decomposed
into the loudest single-source in each frequency bin (circles) and the background (all other sources com-
bined; lines). ‘Foreground’ sources with strains larger than that of the background are highlighted in black.

∗Note that the term ‘foreground’ is also sometimes used in the literature to refer to general astrophysical
sources of GW, at times even the GWB. Resolvable single sources are also referred to as ‘continuous’ and ‘deter-
ministic’ sources.
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At low frequencies, the GWB characteristic-strain tends to follow a power-law (Phinney 2001),

hc ∝ Ayr−1

(
f

1 yr−1

)−2/3

, (3.1)

with an amplitude, typically referenced at a frequency f = 1 yr−1, on the order of Ayr−1 ∼ 10−15 (Wyithe
& Loeb 2003). The power law model is based on the assumption of a continuum of sources, evolving purely
due to GW emission and over an indefinite frequency range. The −2/3 spectral index emerges based on
the rate at which the binary separation ‘a’ shrinks (‘hardens’) due to GW radiation (see, e.g., the deriva-
tion in Sesana, Vecchio & Colacino 2008). At small separations the residence time, a/(da/dt), decreases
enough that the average number of binaries emitting in a given frequency bin reaches order unity, causing
the spectrum to steepen and falloff from the power-law prediction (Sesana, Vecchio & Colacino 2008).

While neither class of low-frequency GW signal has been observed, the most recent upper-limits on a
GWB (Lentati et al. 2015; Arzoumanian et al. 2016; Shannon et al. 2015; Verbiest et al. 2016) are now as-
trophysically constraining, if not surprising (e.g. Kelley, Blecha & Hernquist 2017; Middleton et al. 2017).
Additionally, some groups have even begun to constrain the presence of individual MBHB in nearby galax-
ies (e.g. Babak et al. 2016; Schutz & Ma 2016).

Recent studies predict that the IPTA could detect the GWB by about 2030, if fiducial parameters
are reasonable (e.g. Taylor et al. 2016b; Kelley et al. 2017). It is often stated that the GWB is expected
to be detected before the foreground. However, only a few papers exist with quantitative predictions for
single-source rates (Sesana, Vecchio & Volonteri 2009; Ravi et al. 2014)∗, and only one which includes cal-
culations of detection probabilities (Rosado, Sesana & Gair 2015). Sesana, Vecchio & Volonteri (2009)
use dark matter halos and merger rates from the Millennium simulations combined with a variety of ob-
servational BH–galaxy scaling relations to calculate resolvable MBHB strains. They predict at least one
system with residuals between ∼ 5 – 50 ns after observations T = 5 yr duration, with resolvable sources
tending to come from redshift z ∼ 0.3 – 1, and chirp-masses log(M/M⊙) ∼ 8.5 – 9.5. Ravi et al. (2014)
use observationally determined galaxy merger rates and MBH–galaxy scaling relations to construct semi-
analytic MBHB systems. At fGW = 1 yr−1 (with T = 10 yr), they expect roughly one source with a strain
above 10−16, and a probability of 10−2 – 10−1 for strains above 10−15. Using an IPTA-like model, Rosado,
Sesana & Gair (2015) find a single-source detection probability of ∼ 10% (∼ 20%) after 20 yr (30 yr) of
observations, and overall a ∼ 5 – 25% chance that a single-source will be detected before the GWB.

Single sources offer a largely independent window into MBHB populations and their evolution. While
the amplitude of the GWB, for instance, suffers from degeneracies between the distribution of MBH masses
and their coupling to environmental hardening mechanisms, the observation of deterministic sources could
break that degeneracy and possibly demonstrate MBHB orbital evolution in real time. Additionally, unlike
the GWB, foreground sources immediately offer the prospect of observing electromagnetic counterparts.
Numerous existing surveys have already identified candidate MBHB systems based on spectroscopic and
photometric techniques, for example searching for periodic variability in the CRTS (Charisi et al. 2016)
and PTF surveys (Graham et al. 2015a). While there are signs that a large fraction of these candidates
could be false positives (Sesana et al. 2017a), they are still promising for the possibility of multi-messenger
observations.

∗Roebber et al. (2016) do not discuss single-sources per se, but much of the analysis is relevant, and their
Fig. 2 of a high-resolution realization of GW sources, is very informative.
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3.2 Methods

3.2.1 MBH Binary Population and Evolution

In this section we summarize the key aspects of our methodology which are described in detail in
Kelley, Blecha & Hernquist (2017) & Kelley et al. (2017). We use the galaxies and black hole populations
obtained from the Illustris simulations, which coevolve hydrodynamic gas cells along with star, dark mat-
ter, and black hole particles over cosmic time (Vogelsberger et al. 2014b; Genel et al. 2014; Torrey et al.
2014; Nelson et al. 2015). Once a galaxy grows to a halo mass of ∼ 7 × 1010 M⊙ (Mstar ∼ 109 M⊙) it is
given a MBH with a seed-mass of 105 M⊙, which then accretes matter from the neighboring gas cells as
the galaxy evolves (Vogelsberger et al. 2013; Sijacki et al. 2015). After a galaxy merger, if two MBH par-
ticles come within a gravitational smoothing length of one another (typically ∼ kpc), they are manually
‘merged’ into a single MBH with their combined masses.

We identify these pseudo-mergers in Illustris and further evolve the constituent MBH in semi-analytic,
post-processing simulations to model the effects of the small scale (sub-kiloparsec) ‘environmental’ pro-
cesses which mediate the true, astrophysical merger process. To do this, we calculate density and veloc-
ity profiles from each MBHB host galaxy, and use them to calculate hardening rates from dynamical fric-
tion, stellar scattering, viscous drag (from a circumbinary disk), and gravitational wave emission. Eccen-
tric binary evolution can also be included, in which the eccentricity is enhanced by stellar scatterings
and decreased by gravitational wave emission (discussed in Kelley et al. 2017). When binaries are ini-
tialized following their pseudo-mergers in Illustris, they are given a uniform, fixed value of eccentricity
(e0), which, along with the binary separation, is then numerically integrated in time until each system
either coalesces or reaches redshift z = 0. Due to the scarcity of MBHB observations, there are virtu-
ally no constraints on their eccentricity distribution. We thus explore a wide range of initial eccentricities,
e0 = [0.0, 0.01, 0.25, 0.50, 0.75, 0.95, 0.99]. For circular evolution models, we use a stellar scattering prescrip-
tion based on Magorrian & Tremaine (1999), in which we can vary the effectiveness of scattering based on
a parameter∗ Frefill ∈ [0.0, 1.0] — which acts as a proxy for the overall degree of environmental coupling
(see Kelley, Blecha & Hernquist 2017).

By associating the presence of each binary in the simulation volume (Vill = 80 Mpc3, at z = 0)
with the result of a Poisson process, we can calculate GW spectra from an arbitrary number of observa-
tional ‘realizations’ by re-drawing from the appropriate distribution and weighting each binary accordingly.
Specifically, we define a representative volume factor for binary i at a time-step j,

Λij = 1
Vill

dVc(zij)
dzij

∆zij , (3.2)

where the comoving volume element is,
dVc(z) = 4π (1 + z)2 c

H(z)
d2

c(z) dz. (3.3)

Here, H(z) is the Hubble constant at redshift z (and corresponding comoving distance dc), c is the speed
of light, and ∆zij is the redshift step-size for this binary and time step. Λij is the expectation value for
the number of astrophysical binaries in the past light-cone between redshifts zij and zij + ∆zij , corre-
sponding to each simulated binary & time-step. To construct an alternate realization, we can draw from
the Poisson distribution, P(Λij), for each binary and step. For example, the characteristic GW strain spec-

∗This ‘refilling’ parameter interpolates between a sparsely filled loss-cone (the region of stars in parameter
space able to interact with the binary), and a full one.
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trum from all binaries is,

h2
c (f) =

∑
ij

P(Λij)
∞∑

n=1

[
f

∆f
h2

s (fr)
(

2
n

)2

g(n, e)

]
fr=f(1+z)/n

. (3.4)

The spectrum h2
c is over all observed frequencies f with bins of width ∆f , usually determined by the to-

tal temporal baseline of observations (e.g. by PTA). Equation 3.4 takes into account that an eccentric-
ity e leads to a redistribution of GW energy to each harmonic n of the rest-frame orbital frequency fr.
The amount of power observed at f = fr n/(1 + z) is given by the power distribution function g(n, e)
(see, Eqs. A1 in Kelley et al. 2017). For a chirp-mass M = (M1M2)3/5

/ (M1 + M2)1/5, the sky- and
polarization- averaged GW-strain from a binary with zero eccentricity is (e.g. Sesana et al. 2004),

hs(fr) = 8
101/2

(GM)5/3

c4 dc
(2πfr)2/3

, (3.5)

which, for a circular binary, is emitted entirely at the n = 2 harmonic. The characteristic strain for a
particular source, which takes into account the number of cycles viewed in-band, is,

h2
c,s(fr) = h2

s (fr)
(

f

∆f

)
. (3.6)

Alternatively, the observed timing residual can be calculated directly∗ as (Sesana, Vecchio & Volonteri
2009),

δt = 101/2

15
hs(f)

(
T

f

)1/2

. (3.7)

3.2.2 Detection Statistics and Pulsar Timing Array Models

In our analysis we only consider the single loudest sources in each frequency bin as candidates for
the foreground. Ravi et al. (2012) point out that PTA can resolve spatially in addition to chromatically,
allowing multiple loud sources to be simultaneously extracted from the same bin. Boyle & Pen (2012) and
Babak & Sesana (2012) demonstrate that this is possible if there are roughly six or more pulsars equally
dominating PTA sensitivity. The uncertainty introduced by neglecting this effect is small compared to
those of the models being used, and additionally, based on our results, it is rare for multiple single-sources
to each produce comparable strains while also resounding over the GWB.

Methods for the detection of single sources by existing PTA have been rapidly developed in the
last decade (e.g. Corbin & Cornish 2010; Lee et al. 2011; Boyle & Pen 2012; Babak & Sesana 2012; El-
lis, Siemens & Creighton 2012; Ellis 2013; Taylor, Ellis & Gair 2014; Zhu et al. 2015, 2016; Taylor et al.
2016a). For detection statistics with mock PTA, we use the methods presented in Rosado, Sesana & Gair
(2015, hereafter, RSG15). The statistics for the background, based on cross-correlations between pulsars,
were also used in Kelley et al. (2017). In this study, however, we explore the distinction between a true
background with the loudest single-sources per bin removed (‘back’) at the same time as all GW sources
included (‘both’).

The formalism for single-sources (GWF), based on excess power recovery†, requires all pulsars to
have the same frequency sampling determined by the observing duration T (which we vary) and cadence
δt (fixed to δt = 0.05 yr). We use Eq. 35 & 36‡ (RSG15) to calculate the signal-to-noise ratio (SNR) for
each pulsar and each frequency bin, given a GW spectrum and PTA configuration. Using Eq. 32 (Ibid.)

∗δt ∝ hsτgw N1/2, where the observed GW period τgw = 1/f , and the number of observed cycles N = fT .
†and is thus not an optimal statistic
‡Compared to RSG15, we define the GW phase after a time T to be ΦT = 2πfT + Φ0, for an initial phase

Φ0. We find a slightly different expression for the signal-to-noise after integrating their Eq. 36 than they present in
Eq. 46, but the differences are negligible once incorporated into a full analysis.
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name hN
c (f = 0.1 yr) σWN ARN γRN

a 1.0 × 10−15 0.3 µs - -
b 1.8 × 10−15 0.3 µs 4 × 10−15 −3.0
c 6.7 × 10−15 0.3 µs 1 × 10−15 −4.5
d 1.8 × 10−14 3.0 µs 4 × 10−15 −3.5
e 4.6 × 10−14 3.0 µs 2 × 10−13 −1.5
f 2.0 × 10−13 0.3 µs 2 × 10−13 −3.0

Table 3.1: Parameters of the noise models used in our mock PTA. The 2nd column gives the total noise,
in units of characteristic strain, at f = 0.1 yr−1. The remaining columns are the white-noise RMS σWN,
and the red-noise amplitude & spectral index, ARN & γRN (see: Eq. 3.8). The parameters for these mod-
els were chosen manually while trying to accurately represent the properties of observed pulsars (see:
Fig. 3.12). Much of our analysis focuses on models ‘a’, ‘d’ & ‘e’, which are highlighted.

the SNR are converted to bin/pulsar detection probabilities (DP), and Eq. 33 (Ibid.) finally converts to an
overall DP for the PTA to detect at least one GWF source. The single-source detection statistics we use
are not designed for eccentric systems, where the signal from an individual source can be spread over mul-
tiple frequency bins. When this happens, we are effectively treating the portion of the signal in each bin as
independent, which is obviously sub-optimal. As most of the binaries contributing to the GW signals have
fairly low eccentricity (see, e.g. Fig. 3.8; and Kelley et al. 2017), this should only have a minor effect.

To calculate plausible detection probabilities, we use mock PTA with a variety of noise models. We
characterize the noise with three parameters, a white-noise amplitude σWN, and a red-noise amplitude &
spectral index ARN & γRN for a power-spectrum,

SRN = A2
RN

12π2

(
f

fref

)γRN
f−3

ref . (3.8)

Defined in this way, ARN corresponds to the equivalent strain at the reference frequency fref, which is al-
ways set to 1 yr−1 in our analysis. All pulsars in a given array use the same noise parameters.

Noise models were selected to cover a parameter space comparable to that measured by PTA. The
noise characterization between different PTA can vary significantly, at times being inconsistent. For exam-
ple, the red noise of J1713+0747 is characterized by an amplitude and spectral index: ARN = 2 × 10−15 &
γRN = −4.8 by the EPTA (Caballero et al. 2016), and ARN = 3.5 × 10−14 & γRN = −2.0 by Parkes (Rear-
don et al. 2016). Similarly, J1910+1256 is given ARN = 2.8 × 10−13 & γRN = −1.9 by NANOGrav (The
NANOGrav Collaboration et al. 2015), but ARN = 2.9 × 10−15 & γRN = −5.9 in the IPTA data release
(Verbiest et al. 2016). The nature and characterization of pulsar red-noise would thus seem to be quite
uncertain. The parameters of the six noise models we use are given in Table 3.1, and are plotted against
pulsars from each PTA in Fig. 3.12. Much of our analysis focuses on noise models ‘a’, ‘d’ & ‘e’, which we
consider as qualitatively optimistic, moderate, & pessimistic respectively.

The properties of the GWF depend not only on the distribution of the loudest sources, but also the
frequency bin-width, and the distribution of all systems in that bin. These effects are taken into account
in the detection statistic by including the background in the ‘noise’ term, when calculating an SNR. A
sample calculation of the strain, SNR, and detection probability (DP) for the GWF are shown in Fig. 3.15,
for noise-model ‘d’, at a number of sample frequencies. While the single-source strains and resulting SNR
are distributed around a well-defined peak, the distributions of DP end up being fairly flat because of their
strong sensitivity to SNR. These relatively flat DP distributions lead to large variations between realiza-
tions of the foreground. The error bars included in our figures should thus be kept in mind. The standard
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deviations in DP are fairly insensitive to increases in the number of realizations we consider, implying that
the size of our underlying MBHB population may be the limiting factor (discussed further in §3.4.1).

To analyze the properties of the GWF, we define its sources as those which contribute at least a frac-
tion λfore of the total GW energy in that bin, i.e. (hfore

c )2 ≳ λfore (hc)2 = λfore[(hfore
c )2 + (hback

c )2]. In our
analysis we explore different values of λfore, but adopt a fiducial value of λfore = 0.5, as used in Fig. 3.1.
In practice, the level at which a single source is discernible will depend on the overall source and PTA
properties, especially via the signal-to-noise ratio (SNR), i.e. λfore ∝ SNR−1. With a sufficient number
of pulsars contributing comparatively to the SNR, a PTA can even discern multiple single-sources in a
single frequency-bin (Babak & Sesana 2012; Boyle & Pen 2012; Petiteau et al. 2013), making λfore = 0.5
conservative in the eventual high-SNR regime.

3.3 Results

3.3.1 The Structure of the Low-Frequency GW Sky

Figure 3.2 shows the median, cumulative fraction of GW energy contributed by the loudest binaries
in each frequency bin. The number of sources which contribute significantly to the GW energy density
falls rapidly with increasing frequency in direct proportion to binary residence time. For a circular binary
hardening solely due to GW emission, the residence time scales with frequency as τgw ∝ f−8/3. At fGW ∼
(10 yr)−1, the median number of binaries producing 50% of the GWB energy is ∼ 10, while by fGW ∼
1 yr−1, that number falls to ∼ 1. These results can be compared to those of Ravi et al. (2012, Fig. 2) who
find fairly consistent values, although more sources contributing at low frequencies, which implies a lower
GWF rate.

Figure 3.3 shows the probability of a single source producing timing residuals and strains above a
given value. At fGW ∼ 1 yr−1, 50% of our realizations have a MBH binary with strain above ∼ 2 × 10−16

or a timing residual of ∼ 1 ns. Our 10% expectations are about an order of magnitude lower than recent
PTA upper limits for foreground sources: ∼ 6 × 10−15 – 10−14 at ∼ (5 yr)−1 by the EPTA (Babak et al.
2016), 3 × 10−14 at ∼ (3 yr)−1 by NANOGrav (Arzoumanian et al. 2014), 2 × 10−14 at ∼ (3 yr)−1 by the
PPTA (Zhu et al. 2014). These strains and timing residuals are a few times higher than those of Sesana,
Vecchio & Volonteri (2009) who predict at least one source with timing residuals between ∼ 5 – 50 ns after
T = 5 yr.

The previous figures examined the properties of all binaries. Figure 3.4 shows the fraction of realiza-
tions containing a foreground source in each frequency bin (circles) for three different foreground factors:
λfore = 0.5, 0.7 & 0.9. The average over fixed logarithmic frequency intervals is also shown (lines). While
the typical amplitude of foreground strains decreases significantly at higher frequencies, the ever decreas-
ing number of sources contributing at those frequencies leads to higher GWF rates.

The parameters of the binaries producing low-frequency GW signals are shown in Fig. 3.5. The
properties of the loudest source in each frequency bin are plotted in red, and those of all other systems
(weighted by GW energy) in blue. For comparison, the median properties of all systems (unweighted) are
shown in grey. In the strain panel (upper-left), the GWB itself is shown for comparison in green as the
typical strains of background sources are on the order of 10−19 – 10−20. The trends in binary parameters
are driven by the convolution of hardening timescale and the number density of MBH binaries which falls
strongly with total mass. Higher-mass binaries harden faster, and all systems spend less and less time
at smaller separations. At low frequencies, where massive binaries are still numerous, they dominate the
population and even occur at smaller distances. Overall, loud sources have much broader distributions of
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Figure 3.2: The cumulative fraction of GW energy produced by the loudest binaries in each frequency
bin. The number of sources dominating the GW energy contribution drops rapidly with increasing fre-
quency in correspondence with the overall number of binaries at the corresponding separations. While the
relative contribution from the loudest sources increases at high frequencies, the overall amplitude of GW
signals simultaneously decreases.

parameters, but tend to be slightly more massive, nearer, and lower eccentricity than the corresponding
background sources.
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Figure 3.3: The rate at which single-source timing residuals and strains of a given amplitude are pro-
duced in each frequency bin. Below f ∼ 1/ (10 yr)−1, each bin typically has a source producing residuals
of ∼ 10 – 100 ns (hc ∼ 10−15). The current single-source upper limits from PTA are also shown from the
EPTA (Babak et al. 2016), NANOGrav (Arzoumanian et al. 2014), and PPTA (Zhu et al. 2014).
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Figure 3.4: The fraction of realizations with a foreground source in each frequency bin (circles) and
averaged over frequencies (lines). From light to dark, different criteria of foreground sources are show:
λfore = 0.5, 0.7 & 0.9. Single sources which are ∼ 10× louder than the background (λfore = 0.9) are gen-
erally one-tenth as common as those equal to the background (λfore = 0.5), at f ∼ 1/ (5 yr)−1 occurring
∼ 1% and ∼ 10% of the time respectively.

115



www.manaraa.com

PTA GW Singles 3.3 - Results

10-1 100 101

102

103

104

d
L
[M

p
c]

Loud Back Number GWB

10-1 100 101
0.0

0.2

0.4

0.6

0.8

e

10−18

10−17

10−16

10−15

10−14

h
c

107

108

109

1010

M
[M

¯
]

10-8 10-7 10-8 10-7

GW Frequency (Observed) [yr−1]

e0 = 0.50
T= 20.0yr

∆t= 0.05yr

Frequency[s−1]

Figure 3.5: Properties of low-frequency GW sources showing 1- & 2- σ contours over 100 realizations.
Properties of the loudest source in each frequency bin (red) are compared to those of all other systems
(weighted by GW-energy; blue). The median properties of all systems (unweighted) are also shown (grey).
Loud sources have much broader distributions of parameters, but tend to be slightly more massive, nearer,
and lower eccentricity than the corresponding background sources when the latter are weighted by their
GW energy.
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3.3.2 Parametric Dependencies

Eccentricity, by shifting the distribution of emitted GW energy versus frequency, affects the number
of sources dominating GW signals. Figure 3.6 shows the number of loudest binaries contributing 0.5 of the
total GW energy for each eccentricity model. The inset panel shows the trends versus eccentricity at the
orange-highlighted frequencies. As eccentricity increases, more sources contribute to the GW energy at all
frequencies, but the effect is strongest at low to intermediate frequencies (∼ 0.1 – 0.3 yr−1).

Varying the stellar scattering efficiency, unlike eccentricity, has very little effect on the number of
binaries contributing significant GW energy. While the effectiveness of scattering modulates the overall
merger rate and total GW energy, it does not redistribute energy over frequency. This fact is echoed in the
amplitudes of the loudest sources which also show virtually no dependence on environmental hardening
rate. The latter is true, although to a lesser extent, with varying eccentricity.

Despite the weak effect of eccentricity on the loudness of sources, their varying number noticeably al-
ters the rate of foreground source occurrences. Figure 3.7 illustrates the rate at which a foreground source
appears per frequency bin, for each eccentricity model. As eccentricity increases, the rate of foreground
sources decreases. This is due primarily to two effects which occur at high eccentricities: i) more sources
contribute significantly to each frequency bin (Fig. 3.6); and, ii) the GW power from each single source
is spread out over a broader frequency range. Overall, Fig. 3.7 shows that initial eccentricities e0 ≳ 0.9
produce 2 – 10 times fewer foreground sources as e0 ∼ 0.0.

Eccentricity also slightly increases the rate at which binaries harden, which has some effect on the
GWB amplitude but very little effect on the GWF occurrence rate. This can be seen in Fig. 3.13 which
shows GWF rate for varying loss-cone refilling parameters (Frefill)—a good proxy for the overall degree
of environmental coupling. The increased hardening rate from Frefill is substantially stronger than that of
eccentricity (for these frequencies), and produces virtually no change to the GWF rate.

As alluded to previously, the binary parameters of sources contributing to the GWB and GWF are
mostly insensitive to hardening models. Figure 3.8 shows the properties of the loudest sources in each
bin (red) compared to those of the background, weighted by GW energy, (blue) as a function of initial-
eccentricity, at a frequency of f = 0.32 yr−1. The distribution of unweighted properties are also plotted
(grey) for comparison. In each case, a one-sigma interval is shown. In the most extreme eccentricity model,
e0 = 0.99, the distances to both loud and background sources increases drastically and the strain drops
correspondingly. In this case, the eccentricity is extreme enough that the majority of the GW energy in
this regime is shifted out of band. Otherwise typical properties are constant as eccentricity varies, as is the
case with varying stellar scattering efficiencies.

The lower right panel in Fig. 3.8 shows the eccentricity distributions of sources at f = 0.32 yr−1.
The eccentricity in the unweighted population of all binaries is nearly linear with initial eccentricity. Loud
sources, and the binaries which contribute most to the background, however, have significantly damped
eccentricities which are much lower in the PTA band than their initial values∗. The loudest sources tend
to have lower median eccentricities by ∼ 0.1, and the low-end of their 68% interval is typically half that
of background sources. More massive systems circularize more rapidly, but the tendency for lower eccen-
tricities in single sources is likely a selection bias as they are the systems which emit GW energy in a more
concentrated frequency range (i.e. nearer the n = 2 harmonic).

∗Kelley et al. (2017) shows in detail the evolution of eccentricity as binaries harden
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Figure 3.6: Number of binaries contributing 50% of the GW energy for each eccentricity model. The
inset shows the trends versus eccentricity at each of the orange highlighted frequencies. As eccentricity
increases, the number of contributing systems increases and the drop-off at higher frequencies becomes
more gradual.
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Figure 3.7: The occurrence rate of foreground sources (λfore = 0.5) per frequency bin for each initial
eccentricity model. For low-to-moderate initial eccentricities (e0 ≲ 0.5) the rate plateaus to ∼ 50% at
frequencies f ≳ 2 yr−1, and at higher eccentricities (e0 ≳ 0.75) the occurrence rate drops rapidly at lower
frequencies (f ≲ 1/ (2 yr)−1). The inset panel shows the foreground occurrence rate versus eccentricity for
the orange highlighted frequencies.
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Figure 3.8: Properties of the GW sources at f = 0.32 yr−1 = 10 nHz versus initial eccentricity. Except
for the highest eccentricity model (e0 = 0.99), the properties of the foreground are insensitive to evolu-
tionary models. There is a slight trend for increasing strains and chirp masses with both increasing initial-
eccentricity and loss-cone efficiency.
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3.3.3 Times to Detection

In Fig. 3.9, we show detection probability (DP) versus time for the e0 = 0.5 model, and a PTA with
60 pulsars for each noise model from Table 3.1 and Fig. 3.12. For comparison, the IPTA first data release
included almost 50 pulsars, with a median observing duration of T ∼ 11 yr. Forecasts for expansions typ-
ically assume 6 new pulsars added to the IPTA per year (e.g. Taylor et al. 2016b), but new pulsars, with
very short observing baselines, will contribute very little to DP initially. Recall, additionally, that we as-
sume uniform noise characteristics for each pulsar in our mock arrays, while real PTA have pulsars with
highly heterogenous noise characteristics which further complicates a direct comparison to our results.

The first three panels of Fig. 3.9 show DP for the foreground (loudest source in each frequency bin)
& background (all other sources in each frequency bin) and ‘both’ in which the signal is the sum of all
background and foreground sources. DP for the ‘both’ model is still calculated using the detection statis-
tics formally for a ‘background’. This is meant to examine the effect of removing the loudest sources on
the background detection statistics. If we associate this mock PTA at 10 years with the current IPTA,
then depending on noise model the expected DP would be anywhere between ∼ 0.0 for severe red noise, to
∼ 0.7 or ∼ 0.5 for the foreground and background respectively for white-noise only. Clearly, better under-
standing the red noise of observed pulsars is crucial to reliably forecasting low-frequency GW detections.

The last two panels show the DP ratios of foreground-to-both, and background-to-both. In all mod-
els, the GWF have uniformly higher DP than either the ‘back’ or ‘both’ signals. In the case of no red-
noise (‘a’, grey), the ‘back’ and ‘both’ DP are only slightly below that of the foreground. Stronger noise,
especially red noise, affects the GWB detection much more strongly than the GWF. This is not surpris-
ing as red noise, by definition, affects the lowest frequency bins most strongly, which is where the GWB is
loudest, but generally below the GWF peak (see, e.g. Fig. 3.3).

With the GWB detection statistics, the noise models become highly stratified. The shallow red-noise
models—‘c’, ‘d’, & ‘f’—all perform comparably with ∼ 50% lower DP than the white-noise only model at
10–15 yr. At later times the shallow models approach the white-noise only values. The steep red-noise
models—‘b’, ‘e’ & ‘g’—also all perform comparably, but with near-zero DP up to ∼ 30 yr. The ‘both’
and ‘back’ DP typically differ by at most 50%, while ‘fore’ and ‘both’ differ by over an order of magnitude
in the steep red-noise models. This suggests that the difference between GWF and GWB DP is driven
largely by the nature of the detection statistic instead of simply the amount of GW power being analyzed.

To observe the GWB, the correlations between pulsars are required to distinguish the GW signal
from that of noise. Because GWF sources will behave deterministically, they should be easier to distin-
guish. At the same time, line-like noise sources (for example due to uncertainties in planetary ephemerides),
or GWF sources with few resolved periods (thus more closely resembling red noise), may complicate the
identification process via single pulsars. If, instead, a correlated search is required, the recovery efficiency
could become significantly lower — perhaps yielding DP which lie below that of the GWB.

Due to the similarity between numerous noise models, our additional analysis focuses on the ‘a’, ‘d’
& ‘e’ configurations. These can be considered qualitatively as optimistic, moderate & pessimistic respec-
tively, but keep in mind that realistic PTA pulsars have heterogenous noise properties possibly making ‘a’
and ‘d’/‘e’ overly optimistic & pessimistic respectively (see §3.2.2). Figure 3.10 compares DP progressions
for PTA with differing numbers of pulsars and these selected noise models. Because the GWB detection
statistic depends on a cross-correlation between pulsars—i.e. pulsar-pairs, it is far more sensitive to the
number of pulsars included in the array. Considering the ‘d’ noise-model: at T = 20 yr, the difference in
DP between 20 and 80 pulsars is 70 vs. 95% for the GWF, but 10 vs. 80% for the GWB. In the highly pes-
simistic noise-model ‘e’, 50% DP isn’t reached for the background within 40 yr, even for 100 pulsars, while
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Figure 3.9: Detection Probability (DP) versus observing duration for mock PTA with a variety of noise
models (lines). Panels show DP for the ‘Fore’ground (the loudest source in each frequency bin), the
‘Back’ground (all other sources in each bin), and ‘both’ in which the signal is the sum of both foreground
and background sources. The ‘both’ signal is still measured using the ‘background’ detection statistics
from Rosado, Sesana & Gair (2015). The bottom two panels show the ratio of detection probabilities for
the foreground versus both, and the background versus both. Noise models ‘a’, ‘d’ & ’e’, which we focus
on, are highlighted with dashes. The DP for the foreground is effectively always higher than that of the
background (or combination). Note that for the ‘back’ and ‘both’ signals, the noise models ‘c’ & ‘f’ nearly-
perfectly overlap.
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the foreground reaches 50% DP in ∼ 15 yr.
A comparison between the DP curves for varying eccentricity models and varying loss-cone parame-

ters are shown in Figs. 3.16 & 3.17. In general the DP varies by ∼ 15 – 25% based on varying evolutionary
parameters. In the case of the highest eccentricities, e0 = 0.95 & 0.99, the GWB DP drops drastically, and
in the latter case is effectively unobservable for all of the noise and PTA models considered∗. For low to
moderate eccentricities (e0 ≲ 0.75) the time to reach a given DP typically varies by ∼ 5 yr, while for vary-
ing environmental coupling it varies by up to ∼ 10 yr. Still, the dependence on noise model and number of
pulsars tends to be more significant than between evolutionary parameters.

The time to reach a given DP is plotted versus number of pulsars in Fig. 3.11. It typically takes ∼ 5
– 10 yr to increase from a 50% DP to 90%, but for low numbers of pulsars it can be as long as ∼ 20 yr. As
already discussed, GWB detection relies on correlations between pulsars which introduces a very strong
dependence on the number of pulsars, which is clearly apparent. In the modern ‘d’ noise model, doubling
the number of pulsars from 40 to 80 decreases the time to detection by almost a factor of 3: from 65 to
22 years (for DP = 0.9). GWF detection is much less sensitive to number of pulsars, with the time to
detection decreasing from ∼ 23 to 15 yr from the same increase in pulsar number.

Recall that the IPTA, for example, is expected to expand by roughly 6 pulsars per year, meaning
that as it continues to collect data it not only moves upward in this figure, but also to the right. The grey
dashed lines assume a starting point of 50 pulsars after 10 years of observations (based on the first IPTA
data release) with the addition of 1, 3 & 6 pulsars per year shown in each line. If the 3 pulsars/year line
accurately reflects the IPTA expansion, after taking into account the decreased leverage of newly added
pulsars, then we would expect the GWF & GWB to reach 90% DP after roughly 18 & 22 yr respectively of
total observing time (i.e. 8 & 12 yr of additional observations) for the moderate noise model ‘d’.

∗The highest eccentricities decimate the GW spectrum because i) the energy from each binary is spread so
broadly, and ii) because the GW hardening rate is drastically increased. This is discussed in detail in Kelley et al.
(2017).
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Figure 3.10: Detection probability versus time for the foreground, background, and combination (‘both’;
columns), showing the representative noise-models ‘a’, ‘d’ and ‘e’ (rows). PTA with varying numbers of
pulsars are illustrated with differing line colors. The number of pulsars very strongly effects the DP of the
GWB (‘back’ and ‘both’) because they rely on cross-correlations to make detections, while the GWF is
much less sensitive to pulsar number. The GWF DP is also much more robust against worsening red noise
as the foreground spectrum is flatter than that of the GWB.
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Figure 3.11: Time to reach a given detection probability versus number of PTA pulsars. Optimistic ‘a’
(white noise only), moderate ‘d’, and pessimistic ‘e’ noise models are shown. The grey dashed lines show
sample expansion rates for a PTA starting with 50 pulsars after 10 years of observations and adding 1,
3 & 6 pulsars per year. If we consider the 3/yr expansion rate with the ‘d’ noise model realistic for the
IPTA, then we would expect to reach 90% DP in roughly 8 & 12 yr (overall observing baselines of 18 and
22 yr) for the GWF & GWB respectively.
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3.4 Discussion

3.4.1 Caveats

Some caveats should be borne in mind when examining our results. First, the variations in detection
probability between realizations of our foreground models are significant. We have examined the particular
binaries which are ‘detected’ in our analysis and find that they are sampled from a fairly broad distribu-
tion of parameters. This is reassuring as the statistics are not dominated by a handful of systems. Still,
the overall population of MBHB from Illustris may be insufficient to properly sample the full light-cone
of observations. Similarly, while we resample our populations to extrapolate to the volume of the universe
and include Poisson noise, we are still subject to the same intrinsic systematics of our underlying source
population. This is all the more true in a GWF analysis which is by definition far more sensitive to indi-
vidual sources than the GWB is.

It is also important to note that our mock PTA models are suboptimal because they use uniform
pulsar parameters across the array, as required by the detection statistics we use. The time sampling and
noise models we have used in our analysis are representative of the published specifications of PTA pulsars.
Still, real PTA include highly heterogenous populations of pulsars with varying sampling and noise char-
acteristics. For example, our pessimistic noise model (‘e’) is consistent with that of some pulsars, but in a
heterogenous PTA, pulsars with such strong noise would contribute far less to the SNR than other pulsars
with better noise levels. The pessimistic model ‘e’ is thus certainly overly pessimistic. While many pulsars
have no observed red noise, our optimistic model ‘a’—with only white noise—is, similarly, likely overly op-
timistic∗. In addition to uncertainties in the most representative noise model, even choosing an accurate
number of pulsars is non-trivial. PTA continue to expand by adding new systems, which are a very im-
portant part of detection forecasts (e.g. Taylor et al. 2016b), but have different frequency sensitivities and
thus different leverages on SNR.

Finally, the GWF detection statistics we use are suboptimal in at least two respects. First, the statis-
tics in Rosado, Sesana & Gair (2015) do not account for eccentric effects, and we treat the GW energy
from single sources that is split across multiple frequency bins as entirely independent. Secondly, the ex-
cess power statistics may not perform as well on data where noise processes are harder to distinguish from
single GW sources. The presence of line-like noise, due to uncertainties in planetary ephemerides (and
their harmonics) for example; or instrumental effects, could introduce significant interference. At the very
least, it is likely that foreground sources with periods comparable to the observing duration will be hard
to distinguish from red noise when using single pulsar searches. This may necessitate correlated searches
with lower recovery efficiencies.

3.4.2 Conclusions

Single GW sources resolvable above the background, which we refer to as GW Foreground (GWF)
sources, tend to be most detectable at frequencies near ∼ 0.1 – 0.3 yr−1. At higher frequencies
there are fewer sources which also tend to be less loud. At lower frequencies the gravitational wave back-
ground (GWB) from all other sources is more likely to drown out the singles. According to most of our
models, we would expect there to be a foreground source with a characteristic strain of about 10−15 (or
timing residual of ∼ 30 ns) after 10 yr of observations. These values are roughly a factor of two higher
than those predicted by Sesana, Vecchio & Volonteri (2009, e.g. Fig. 3) and Ravi et al. (2014, e.g. Fig. 4)

∗At least when compared to a heterogenous PTA with the same total number of pulsars.
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When taking eccentricity into account, the primary effect of non-circular evolution is to shift GW en-
ergy from lower to higher frequencies. Thus, increasing eccentricity decreases the occurrence rate
of GWF sources, especially at lower frequencies, both by increasing the GWB amplitude and by diffus-
ing the single source strains themselves. Changes in the effectiveness of stellar scattering, and more gener-
ally the rate of environmental hardening, has a small effect on the properties and occurrence
rates of the GWF. Measurements of the number of GWF sources can thus provide strong constraints
on the eccentricity distribution of the underlying MBHB population. Even in the absence of foreground
detections, measuring the number of sources contributing to the background could provide the same in-
formation. This could be done either by directly resolving numerous loud sources in particular frequency
bins (i.e. in frequency space), or indirectly by inference from the degree of anisotropy of the GWB (i.e. in
angular space).

Detection probabilities are usually higher for the GWF than for the GWB — indicating
that the background may not be detected first, as has generally been expected. We emphasize, however,
that there is a large variance between realizations in our simulations suggesting that our population of
MBHB may not be large enough for fully converged results. Based on our models, however, mock PTA
comparable to the IPTA are able to reach high detection probabilities in 18 & 22 yr of total observing
time for the GWF & GWB respectively, with moderate parameter assumptions∗. Our detection probabili-
ties for the GWB are closely in line with those of Rosado, Sesana & Gair (2015), while our GWF values
are notably higher for PTA with ∼ 50 pulsars, though again consistent at ∼ 100 pulsars. The higher
GWF values may be due to our higher single source strains, or possibly a tendency for our sources to re-
side at lower redshifts owing to our dynamical binary evolution which is not included in the previous, semi-
analytic models.

Pulsar red-noise models have a very strong effect on detection probabilities and times
to detection, especially for the GWB. Comparing between white-noise only, and a moderate red-noise
model, the time-to-detection can increase by 50 – 100%. In the case of uniformly severe red noise, prospects
for detecting the GWB can become bleak, but many of the currently monitored PTA pulsars show no
signs of red noise at all. That being said, the GWF is much less sensitive to red noise as single
sources are best detected at intermediate frequencies, unlike the GWB which, in our models, is almost
always strongest at the lowest accessible frequency bins.

Varying eccentricity and environmental coupling have moderate effects on times to detection. For
our intermediate noise model, there is a ∼ 5 yr difference in times to detection between nearly-
circular and moderately-high eccentricity. In the case of single sources, circular systems take less
time to be detected, while for the GWB, moderately-high eccentricities (e0 ∼ 0.75) are easiest to detect.
Between best and worst case stellar-scattering, there is a difference of ∼ 10 yr in times to
detection. The foreground is detectable more quickly as scattering becomes more effective, while the
background is optimally detected at moderately-high scattering efficiency (Frefill ∼ 0.8).

Red-noise models must be included when constructing realistic forecasts for PTA detection prospects,
which has not been done in existing studies. Furthermore, we hope that the red-noise characteristics of
PTA pulsars will be more thoroughly explored in the context of the IPTA to better calibrate our expec-
tations. The development of more flexible detection statistics for low-frequency GW single sources would
also be very helpful in constructing realistic PTA models and testing them with cosmological MBHB popu-
lations.

Many studies have shown that the GWB may be within a decade or so of detection, which is consis-
tent with the results presented here. For the first time, however, we find that the GWF might be just as

∗For comparison, median observing baselines for the IPTA are currently ∼ 10 yr.
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detectable or possibly even more so. Similarly, PTA upper limits on GWF sources should also be used to
constrain the MBHB population as is being done with GWB upper-limits. To this end, additional studies,
with larger populations of MBHB, should be explored. Prospects for PTA detection of low-frequency GW
seem very promising, and even with only upper limits, we stand at the precipice of making substantial
progress in our understanding of MBH binaries and their evolution.
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Figure 3.12: Noise parameters for all pulsars with measured red-noise characteristics in the PTA pub-
lic data releases (Desvignes et al. 2016; Verbiest et al. 2016; The NANOGrav Collaboration et al. 2015;
Reardon et al. 2016; Caballero et al. 2016; Lentati et al. 2016). When multiple PTA have independent red-
noise fits we simply include each characterization independently as they often differ substantially. The first
two columns show the white- and red- noise amplitude in units of dimensionless strain at f = 1/ (10 yr)−1.
The third and fourth columns show the red-noise amplitude and spectral index (see: Eq. 3.8).
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Figure 3.13: The occurrence rate of foreground sources per frequency bin for each loss-cone efficiency
model, using λfore = 0.5. The inset panel shows the foreground occurrence rate versus eccentricity for the
highlighted frequencies (dashed orange lines). While the occurrence rate of foreground sources drops sig-
nificantly at frequencies below ∼ 1/ (5 yr)−1, it remains relatively constant at higher frequencies, unlike
in eccentric models. There is also almost no dependence of the foreground rate with stellar scattering effi-
ciency (Frefill).
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Figure 3.14: Number of binaries contributing 50% of the GW energy for each stellar scattering model.
The inset panel shows trends versus scattering efficiency at each of the highlighted frequencies (dashed
orange). Overall, there is no significant dependence on the relative contribution of binaries from varying
stellar scattering.
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Figure 3.15: Detection statistics for the GWF at different frequencies. The e0 = 0.5 model is shown,
observed by a PTA with 60 pulsars and noise-model ‘d’. Distributions calculated over 200 realizations are
shown in blue, with 1 σ contours in green, and the average values marked by the dashed green line. The
strain from each frequency bin, along with the GWB strain and the pulsar noise characteristics, deter-
mines the SNR which then maps to a detection probability. The cumulative DP of detecting at least one
single-source, over all frequency bins, is shown in the lower right.
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Figure 3.16: Detection probability is shown versus time for a PTA with 60 pulsars for each eccentricity
model. There is mostly a moderate dependence of DP on eccentricity model, causing a variation of ∼ 5 yr
to reach a given DP. For the most extreme, e0 = 0.99, case for the GWF, and additionally the e0 = 0.95
case for the GWB, the DP drops drastically. Overall, the red-noise model still has a larger effect on DP.
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Figure 3.17: Detection probability is shown versus time for a PTA with 60 pulsars for each stellar scat-
tering model. There is a moderate dependence of DP on scattering efficiency, causing a variation of ∼ 5 –
10 yr to reach a given DP. Overall, the red-noise model still has a larger effect on DP.
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Massive BH Binaries as

Periodically-Variable AGN

This thesis chapter is in preparation for submission as
Luke Zoltan Kelley, Zoltan Haiman, Alberto Sesana, Lars Hernquist

abstract

Massive black-hole (MBH) binaries, which are expected to form following the merger of
their parent galaxies, produce gravitational waves which should be detectable by Pul-

sar Timing Arrays at nanohertz frequencies (year periods). While no confirmed MBH binary
systems have been seen in electromagnetic observations, a large number of candidates have
recently been identified in optical surveys of AGN variability. Using a combination of cosmo-
logical, hydrodynamic simulations; comprehensive, semi-analytic binary-merger models; and
analytic AGN spectra and variability prescriptions; we calculate, for the first time, the ex-
pected electromagnetic detection rates of MBH binaries as periodically variable AGN. Our
models predict that many MBH binaries should be present and distinguishable in the existing
data. Current binary candidates may have some doppler-boosted variables and likely many
hydrodynamically-induced variables. Doppler systems are likely to be seen in only the most
massive AGN (Mtot ≳ 109 M⊙), at long orbital periods (τorb ≳ 3 yr); while hydrodynamic sys-
tems can extend to lower masses (Mtot ≳ 107 M⊙) and shorter timescales (τorb ≳ 0.3 yr). We
present the expected selection biases for observing variable-AGN MBHB, and the expected
detection rates for future instruments such as LSST.
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Preface to Chapter 4

A series of papers came out in 2015 looking for signatures of MBH binaries in optical surveys of
AGN. Graham et al. (2015a), Charisi et al. (2016), and Liu et al. (2016) searched for periodic variability in
AGN light-curves which could indicate the presence of a MBHB in the system. The first two studies put
forward populations of ‘candidate’ binary systems—showing periodic signatures, on the order of year pe-
riods, in excess of that expected from red-noise, known to pollute AGN light curves—and the third study
placed upper limits, consistent with the candidate rates of the others. These candidates, put forward for
further study and followup to confirm or reject their binary nature, present an exciting opportunity to
identify binaries in the GW emitting regime, for the first time.

While no individual binary candidate would be expected produce GW signals detectable by current
Pulsar Timing Arrays (PTA), in Sesana et al. (2017b) we explored the expected, cumulative GW Back-
ground (GWB) implied by the detected population. The goal of the study was to determine if the popula-
tion of candidates as a whole were consistent with PTA upper-limits. Two key aspects of the analysis are
1) taking into account possible selection biases in the inferred MBH masses, and 2) using realistic models
of the binary mass-ratio distribution which has no observational constraints at these small separations. Is-
sue (1) is motivated by the observations of Shen et al. (2008) which find that the M–σ relationship, which
forms the crux of most MBH mass estimates, may preferentially be calibrated to MBH with masses ab-
normally large, possibly by as much as ≈ 0.4 dex. Given this caveat, the typical mass-ratio distribution
of MBH binaries should roughly follow that of galaxy mergers (or at least their bulge velocity dispersion),
but there may be strong restrictions on which mass-ratios are able to harden effectively to the small sepa-
rations corresponding to the observed candidates.

The figure above, from Sesana et al. (2017b), shows the key results of the study. The three solid lines
correspond to models which de-bias the MBH mass estimates, and correspond to three different models of
mass-ratio (q). The blue curve corresponds to a high-q distribution: a log-normal centered around q = 1;
the red curve to the fiducial model peaked at q ≈ 0.1, with a cutoff at q = 0.05; and finally the orange
curve corresponds to a low − q distribution, which is the same as the fiducial but without a lower cutoff.
The most stringent PTA upper limit, at an amplitude of 10−15, rules out the high-q distribution, and is in
strong and moderate tension with the fiducial and low-q distributions respectively. While these mass-ratio
distributions are well-motivated, it is worth stating that the high-q distribution is most consistent with
the results found throughout this thesis work. Additionally, there are numerous factors to suggest that the
GWB amplitudes presented in this work are conservative estimates.

The key result of Sesana et al. (2017b) is that the complete population of candidates is in tension
with existing PTA upper limits. The following chapter is motivated by the same population of candidates,
but explores the opposite strategy: instead of modeling the expected GWB From the candidates, we use
our modeled populations to predict the occurrence rate of periodically-variable candidates. This is the first
study, to our knowledge, which makes predictions for rate of electromagnetically observable, close-period
MBH binaries.
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The distribution of GWB amplitudes implied by the population of periodic-variable binary candidates
identified in the CRTS survey (Graham et al. 2015a), taken from Sesana et al. (2017b). The dashed lines
correspond to the masses directly inferred for each AGN, while the solid lines account for bias and de-
crease the mass distributions. The different colored lines correspond to different mass-ratio model: orange,
red, teal corresponding to mass-ratio biased low, flat, and biased high. The dashed vertical lines indicate
the current, most-stringent PTA upper limits on the GWB amplitude.

136



www.manaraa.com

MBH Binaries as Variable AGN 4.1 - Introduction

4.1 Introduction

Active Galactic Nuclei (AGN) are known to often be triggered by interactions and mergers between
their host galaxies (e.g. Comerford et al. 2015; Barrows et al. 2017; Goulding et al. 2018) which drive large
amounts of gas towards the galaxy cores and Massive Black-Holes (MBH) within (Barnes & Hernquist
1992). Many examples of “dual-AGN”, pairs of observably accreting MBH in the same system, have been
identified in radio, optical and X-ray surveys (e.g. Koss et al. 2012; Comerford et al. 2012). After a galaxy
merger, the two MBH are expected to sink towards the center of the post-merger galaxy due to dynamical
friction, which is very effective on ∼ 103 pc scales (Begelman, Blandford & Rees 1980; Antonini & Merritt
2012). Once the MBH reach ∼pc separations and smaller, and eventually become gravitationally bound
as a MBH Binary (MBHB), the continued merging of the system depends sensitively on individual stellar
scatterings extracting energy from the binary (e.g. Sesana, Haardt & Madau 2007; Merritt, Mikkola &
Szell 2007).

The effectiveness of stellar scattering in ‘hardening’ MBH binaries remains unresolved. Of partic-
ular interest is whether and which systems are able to reach the ∼ 10−3–10−1 pc separations at which
point Gravitational Wave (GW) emission can drive the system to coalesce within a Hubble time (Begel-
man, Blandford & Rees 1980). While many dual-AGN systems have been observed, there are no confirmed
examples of AGN in binaries. If MBHB are able to reach periods of ∼ yr (frequencies ∼ nHz), their GW
emission should be detectable by pulsar timing arrays (PTA; Hellings & Downs 1983; Foster & Backer
1990)—the European (EPTA, Desvignes et al. 2016), NANOGrav (The NANOGrav Collaboration et al.
2015), Parkes (PPTA, Reardon et al. 2016), and the International PTA (IPTA, Verbiest et al. 2016). The
most recent and comprehensive MBHB merger models suggest that PTA will plausibly make a detection
within roughly a decade (e.g. Taylor et al. 2015; Rosado, Sesana & Gair 2015; Kelley et al. 2017), and
indeed, the most recent PTA upper-limits on GW signals—particularly on the presence of a power-law,
Gravitational-Wave Background (GWB) of unresolved, cosmological sources—have already begun to in-
form the astrophysical models (Simon & Burke-Spolaor 2016; Taylor, Simon & Sampson 2017).

MBH Binaries form on sub-parsec scales, which, even using VLBI, can only be spatially resolved in
a small, local volume of the universe. Spectroscopic, and especially photometric methods, which don’t re-
quire binaries to be spatially resolved, have recently put forward large numbers of binary candidates (Era-
cleous et al. 2012; Tsalmantza et al. 2011; Graham et al. 2015a; Charisi et al. 2016). The focus of this in-
vestigation are binaries and candidates identified by periodic variability in photometric surveys of AGN. In
particular, Graham et al. (2015a) find 111 candidates in ∼ 240, 000 AGN using the CRTS survey; Charisi
et al. (2016) find 33 in ∼ 35, 000 AGN using PTF; and Liu et al. (2016) initially identify 3 candidates in
670 AGN using PanSTARRS, however, none are persistent in archival data.

Excitingly, the connection between EM and GW observations of MBHB has already begun to be
leveraged using these photometric-variability candidates. While none of the individual candidate systems
can be excluded by PTA measurements, Sesana et al. (2017a) demonstrate that the population of MBHB
that they imply leads to a GWB amplitude in tension with existing PTA upper-limits.

In this paper, we use MBH binary populations based on the Illustris hydrodynamic, cosmological
simulations (e.g. Vogelsberger et al. 2014b; Nelson et al. 2015) coupled with comprehensive semi-analytic
merger models (Kelley, Blecha & Hernquist 2017; Kelley et al. 2017) to make predictions for the occur-
rence rates of periodically variable AGN. In §4.2 we summarize the binary population, the AGN spectra
we use to illuminate them, and the models of variability we consider. In §4.3 we present our results, fo-
cusing on the detectability of MBHB as periodic AGN, both in terms of expected detection rates, and the
fraction of binaries observable as a function of binary parameters.
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4.2 Methods

4.2.1 MBH Binary Population and Evolution

Our MBHB populations are based on the MBH and galaxies in the Illustris simulations. Illustris is
an (108 Mpc)3 volume of gas-cells and particles representing dark matter, stars, and MBH which is evolved
from the early universe to redshift zero (e.g. Vogelsberger et al. 2014a,b; Genel et al. 2014; Torrey et al.
2014; Rodriguez-Gomez et al. 2015; Nelson et al. 2015). The simulations include sub-grid models for star
formation, stellar nucleosynthesis & metal enrichment, and stellar & AGN feedback. MBH particles are
initialized with a seed mass of ∼ 105 M⊙ in massive halo centers and then grow via accretion of local
gas using a Bondi prescription. Details of BH prescription and resulting MBH and AGN populations are
presented in Sijacki et al. (2015). In the Illustris simulations, after or during a galaxy merger, once MBH
come within ∼ 102 – 103 pc of one-another—roughly their gravitational smoothing length—they are man-
ually merged and moved to the potential minimum of the halo. To more carefully examine the MBHB
merger process and dynamics, we ‘post-process’ the MBH mergers using semi-analytic models.

The details of the merger models, and the resulting merger dynamics, are described in Kelley, Blecha
& Hernquist (2017); Kelley et al. (2017); here we outline some of the key aspects. MBH-MBH “merger-
events" are identified in Illustris on ∼ kpc scales. We then consider each of these events independently by
extracting the MBH masses, and spherically-averaged galaxy density and velocity profiles for each mass
constituent (DM, stars, gas) of the host. These profiles are then used to calculate hardening rates of the
semi-major axis based on prescriptions for dynamical friction (Chandrasekhar 1942; Binney & Tremaine
1987), stellar ‘loss-cone’ scattering (Magorrian & Tremaine 1999), viscous drag from a circumbinary disk
(Haiman, Kocsis & Menou 2009; Tang, MacFadyen & Haiman 2017), and GW emission (Peters & Math-
ews 1963; Peters 1964). Dynamical friction is required to harden the system on 10 – 103 pc scales, after
which stellar scattering is dominant until the GW-dominated regime on ∼ 10−2 – 10−4 pc. In some sys-
tems, viscous drag is dominant near ∼ 10−2 pc.

Both stellar scattering and viscous drag remain highly uncertain processes. The largest uncertainty
affecting merger outcomes is likely the effectiveness of stellar scattering: in particular, how efficiently the
stellar ‘loss-cone’—those stars able to interact with the binary—are repopulated. Typical coalesce lifetimes
are Gyr. Binaries which are both very massive M ≡ M1 + M2 ≳ 109 M⊙, and near equal mass ratio q ≡
M2/M1 ≳ 0.1, are generally able to coalesce within a Hubble time. Systems with both lower total masses
(M ≲ 108 M⊙), and more extreme mass ratios (q ≲ 10−2) usually stall at either kpc or pc separations.
The fate of the remaining systems depends more sensitively on the assumed dynamical parameters (i.e. the
loss-cone refilling rate). Note that this differs from numerous previous studies finding that more-massive
systems merge less effectively (e.g. Yu 2002; Cuadra et al. 2009b).

Predictions for the GWB and its prospects for detection by PTA are presented in Kelley et al. (2017),
along with a description of our formalism for eccentric binary evolution. Most models predict GWB ampli-
tudes at periods of 1 yr, Ayr−1 ≈ 0.5 – 0.7 × 10−15, roughly a factor of 2 below current sensitivities, and
detectable within about a decade. Predictions for GW signals from individually resolvable ‘single-sources’
are presented in Kelley et al. (2018a), and are comparable in detectability to the GWB. The results we
present in this paper are relatively insensitive to variations in binary evolution parameters, compared to
those of the electromagnetic and observational models we describe below. For reference, the evolutionary
model used here assumes an always full loss-cone and initial binary eccentricities of e0 = 0.5.

138



www.manaraa.com

MBH Binaries as Variable AGN 4.2 - Methods

10-2 10-1 100

Mass Ratio (q≡M2/M1)

10-1

100

101

Ac
cr

et
io

n 
R

at
io

 (λ
≡
Ṁ
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Figure 4.1: Accretion ratio data points are from hydrodynamic simulations of MBHB in circumbinary ac-
cretion disks by Farris et al. (2014). The line is a manual fit with the function and parameters in Eq. 4.1.

4.2.2 MBH Accretion and AGN Spectra

Our merger models follow the constituent MBH of a given binary for long after it has “merged" in
Illustris. We use the accretion rate recorded in Illustris of the single, remnant MBH as a measure of the ac-
cretion rate to the binary system as a whole, feeding the circumbinary disk, Ṁ = Ṁ1 + Ṁ2. This leaves an
ambiguity in the feeding rate to each individual BH. To resolve this, we use the results from the detailed
circumbinary-disk simulations in Farris et al. (2014), which give the ratio of accretion rates for a variety of
binary mass-ratios: λ = λ(q) ≡ Ṁ2/Ṁ1. We have manually fit the simulation data-points with the curve,

λ = qa1e−a2/q + a3

(a4q)a5 + (a4q)−a5

a1 = −0.25, a2 = 0.1, a3 = 50.0, a4 = 12.0, a5 = 3.5.

(4.1)

We assume that the system is Eddington limited on large scales, i.e. Ṁ ≤ ṀEdd ≡ ṀEdd,1 + ṀEdd,2, where
ṀEdd = 1.4 × 1018 g s−1

(
M

M⊙

) ( εrad
0.1

)−1, and εrad is the radiative efficiency. We let each MBH individually
exceed Eddington∗ (e.g. Jiang, Stone & Davis 2014) which can occur for the secondary when λ > 1.0,
corresponding to q ≳ 0.03. The secondary accretion rate is maximized at λmax = λ(q ≈ 0.08) ≈ 25.

The parameters for MBH evolution in Illustris are calibrated to match the observed M-σ relation,
and the AGN (bolometric) luminosity function based on a constant radiative efficiency of 0.05. (see, Si-
jacki et al. 2015). For our analysis, we calculate full spectra for each MBH based on its mass and Edding-
ton ratio fEdd ≡ Ṁ/ṀEdd. For fEdd ≥ 10−2, we assume the accretion flow is radiatively efficient and use
a Shakura & Sunyaev (1973) ‘thin’-disk solution, which assumes emission is purely thermal from each an-
nulus of the disk. For fEdd < 10−2 we assume radiatively inefficient accretion in the form of an ADAF
(Narayan & Yi 1995), and use the emission model from Mahadevan (1997). The ADAF model includes
self-absorbed synchrotron emission, bremsstrahlung, and inverse-Compton of synchrotron photons. We
thus calculate AGN spectra as,

Fν = F thin
ν (M, fEdd) fEdd ≥ 10−2, (4.2)

= F ADAF
ν (M, fEdd) fEdd < 10−2. (4.3)

Spectra for a variety of accretion rates onto a M = 109 M⊙ BH are shown in Fig. 4.2. Bolometric and
b-band luminosities† are shown in Fig. 4.3, along with the effective radiative-efficiency (Lbol/LEdd) and

∗We also explore the effects of Eddington limited accretion for both MBH in §4.4.2.
†We show the b-band (λ = 445nm) for comparison with Hopkins, Richards & Hernquist (2007), while our anal-
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Figure 4.2: AGN spectra for an MBH of mass M = 109 M⊙, and a variety of accretion rates. For Edding-
ton ratios fEdd ≡ Ṁ/ṀEdd < 10−2, we use the ADAF emission model from Mahadevan (1997), while for
larger accretion rates we use a thermal, Shakura-Sunyaev spectrum.

b-band luminosity fraction (νbLb/Lbol).
The Illustris AGN luminosity function, comparing a constant radiative efficiency of 0.05 and inte-

grating our model spectra, in the left-panel of Fig. 4.4. Observationally-based luminosity functions from
Hopkins, Richards & Hernquist (2007) are included for comparison. The right panel shows values for spec-
tral luminosity in the b-band. Comparing observed and simulated AGN observations is non-trivial. On the
observational side there are extinction, bolometric corrections, K-corrections, and selection biases; while on
the simulation side, we are using disk-integrated quantities based on semi-analytic models instead of either
radiative transfer calculations or full disk-simulations. None the less, our models agree with observations
to well within an order of magnitude.

The luminosity functions from Hopkins, Richards & Hernquist (2007) shown in Fig. 4.4 correct for
obscuration. For our analysis, we use the same model which assumes that only a luminosity-dependent
fraction of systems are observable,

f(L) = f46

(
L

1046 erg s−1

)β

, (4.4)

where L is the bolometric luminosity, and we use the b-band values of: f46 = 0.260 and β = 0.082. We
convert between bolometric and spectral luminosity using the bolometric correction (Hopkins, Richards &
Hernquist 2007),

L

Li
= c1

(
L

L⊙

)k1

+ c2

(
L

L⊙

)k2

, (4.5)

with c1 = 7.40, c2 = 10.66, k1 = −0.37, and k2 = −0.014.
One additional adjustment is required for spectra from disks in binary systems: the presence of a

companion leads to truncation of each disk at a radius comparable to the Hill-radius. Specifically we set

ysis uses the v-band (λ = 551nm) for consistency with binary candidate observations (e.g. in CRTS). The change in
luminosity between these bands is very minor.
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Figure 4.3: Luminosity and radiative efficiency versus Eddington ratio. The left panel shows the bolo-
metric and b-band luminosity, calculated for a M = 109 M⊙ MBH, against a variety of accretion rates.
The right panel gives the overall radiative efficiency εrad = Lbol/LEdd, as well as the fraction of energy
emitted in the b-band (i.e. the inverse of the bolometric correction).

the outer-edge of each disk to,

rmax = a

2

(
Mi

M

)1/3

, (4.6)

∼ 74 Rs

(
τorb

5 yr

)2/3 (
M

109 M⊙

)−2/3

(4.7)

where Mi is the mass of the primary or secondary, a is the semi-major axis, τorb is the orbital period and
Rs is the Schwarzschild radius of the MBH in question. While the bright, optical emission in AGN tends
to come from relatively small radii, disk truncation can be important for especially massive BH and those
in short-period binaries∗. For example, the optical luminosity of a 109 M⊙ MBH, in a 5 yr period binary,
can be decreased by ∼ 10 – 20%.

∗In §4.4.2 we show the effects on truncation of prospective detection rates.
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Figure 4.4: Comparison of predicted versus observed luminosity functions at three different redshifts,
z = 0.5, 1.0 & 2.0. The crosses give values from the observationally-fit quasar luminosity function (QLF)
from Hopkins, Richards & Hernquist (2007), while the lines show predictions from our models. In the left
panel, bolometric luminosity-functions are compared, while the right panel shows functions in the b-band.
The lower panels show the ratio of model to QLF fitting-functions. The solid lines are based on the full
spectral models discusses here, while the dashed lines (left panel) use the approximation used in Sijacki
et al. (2015) (similar to that used for calibrating Illustris), that the bolometric luminosity is a fixed 5% of
the Eddington luminosity.

4.2.3 Observation Parameters and Calculations

We present our results in terms of observability with CRTS- and LSST- like observatories. We adopt
parameters based on CRTS in particular, because of their large sample of binary candidates, but we con-
sider this representative of current survey capabilities in general and thus applicable to PTF and PanSTARRS,
for example∗. For spectral-flux, we adopt v-band sensitivities of F CRTS

ν,sens = 4 × 10−28 erg/s/Hz/cm2 and
F LSST

ν,sens = 3 × 10−30 erg/s/Hz/cm2 for CRTS and LSST respectively†. The amount of variability which is
detectable in a source is dependent on its signal-to-noise ratio Θ, with a floor set by the photometric sta-
bility/precision of a given instrument. We parametrize the variability sensitivity as,

δFsens = Θ−1 + δFfloor, (4.8)
where we assume the noise is a factor of five below the sensitivity threshold, i.e., Θ ≡ 5Fν /Fν,sens, and we
use δFfloor = 0.05 as a fiducial value, based on the smallest variability amplitudes seen in Graham et al.
(2015a) ‡.

The overall number-density (i.e. Mpc−3) of sources is the parameter most directly extracted from our
∗From Charisi et al. (2016) and Liu et al. (2016), the sensitivities of PTF and PanSTARRS are ∼ 2 and ∼ 10

times deeper than CRTS, but both have shorter time baselines in their analyses.
†The CRTS value we get from the cutoff in the flux distribution of candidates from Graham et al. (2015a),

while the LSST value is from Ivezic et al. (2008). Our detection rates are not strongly dependent on the particular
flux-threshold, as discussed in §4.4.2.

‡The form of (4.8) roughly matches that found with HST by Sarajedini, Gilliland & Kasm (2003, see their
Fig. 3) and PanSTARRS by Liu et al. (2016, see their Fig. 4). In both cases, the authors find minimum detectable
variabilities of ∼ 1 – 2%, and then select systems using a cut which is some factor larger, at ∼ 5%.
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models. To better compare with observations, and to reduce the impact of systematic uncertainties in our
luminosity functions, we focus on the number of observable binaries as a fraction of the expected number
of all observable AGN. For the latter, we calculate the observability of all Illustris MBH, using the same
spectral models described in §4.2.1, out to a redshift zmax = 2.0. For the aforementioned sensitivities, we
expect 4 × 105 AGN (9 × 10−7 arcsec−2) to be observable by CRTS, and 107 AGN (3 × 10−5 arcsec−2)
by LSST, assuming a survey area of 33,000 deg2. For comparison, CRTS actually observes ≈ 330,000
spectroscopically-confirmed AGN Graham et al. (2015a), which only differs from our predicted value by
20%. We emphasize, however, that this degree of consistency is largely fortuitous and we would naively
assume systematic uncertainties of at least a factor of a few (i.e. Fig. 4.4).

Our entire population of MBHB is ∼ 104 systems, over all simulation redshifts, while those that
reach τorb ∼ 1 yr before redshift zero is ≈ 2,500. The redshift distribution of sources at τorb = 1 yr is
shown in Fig. 4.10. In numerous of our calculations, the number of observable systems is of order unity,
leading to issues of small number statistics. With this number of total binaries, we cannot consider differ-
ential observability as a function of redshift. Instead, to each binary we associate a number density which
is the inverse of the Illustris volume, Vill = (108 Mpc)3. We then convert to an effective number density
of sources by finding the fraction of comoving volume in the universe (out to zmax) in which that binary
could be observed, f . The total number-density of observed sources is then,

ϕ = 1
Vill

∑
i

fobs,i. (4.9)

Because we are treating ϕ as a redshift-averaged quantity, one can easily convert between number- and
surface- density using the conversion factor 1.2 Mpc3/arcsec2 (for zmax = 2.0).

4.2.4 Models of Variability

The luminosity of an object in a binary system will not necessarily vary on the orbital period or at
all. The premise of photometric identification of MBH binaries is that the binary period is somehow im-
printed into variations of the observed luminosity. In the particularly convincing example of PG 1302-102
(Graham et al. 2015b), sinusoidal variations in the light-curve can be well explained by doppler-boosting
from a mildly relativistic orbital velocity (D’Orazio, Haiman & Schiminovich 2015; but see also Liu, Gezari
& Miller 2018). Additionally, purely hydrodynamic modulations to accretion rates have been observed in
simulations (e.g. Farris et al. 2014). Here we describe models for both types of variability mechanisms.

4.2.4.1 Doppler

Any component of the binary orbital-velocity along the observer’s line-of-sight will lead to both
doppler beaming and a doppler shift in the observed spectrum of the source. In terms of the Lorentz fac-
tor, γ ≡

(
1 − v2/c2)−1/2, and Doppler factor, D ≡

[
γ

(
1 − v||/c

)]−1, the observed flux is (D’Orazio,
Haiman & Schiminovich 2015),

Fν = D3F ′
ν′ , (4.10)

where the observed frequency ν is related to the rest-frame frequency as ν = D ν′. Assuming a power-law
of index αν for the section of the spectrum being observed, the doppler variation in flux from the source
will be (Charisi et al. 2018),

∆F d
ν

Fν
= (3 − αν) v

c
sin i, (4.11)

where v is the orbital velocity, c is the speed of light, and i is the angle between the line-of-sight and the
orbital angular-momentum vector. The sensitivity of doppler boosting to frequency and thus spectral
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shape offers a powerful method of testing it as a variability mechanism. D’Orazio, Haiman & Schiminovich
(2015) have shown that, in both the optical and ultraviolet, this model explains the periodic variations
observed in PG 1302-102.

In full generality, an AGN spectra may not be a power-law at the frequency of interest, so we con-
struct a full spectrum for each MBH in our simulations and numerically calculate the change in flux using
Eq. 4.10. Additionally, the doppler-boosting of each MBH in a binary is necessarily π out of phase, thus
we determine the overall system variation as,

δF d
ν ≡

∆F d
ν,1 − ∆F d

ν,2

Fν,1 + Fν,2
. (4.12)

For inclination angle, we assume a uniform value of sin i = 0.64—to account for selection effects which will
prefer doppler-variable systems to be nearer edge-on.

4.2.4.2 Hydrodynamic

Periodic variations in accretion rates are frequently observed in hydrodynamic simulations of cir-
cumbinary disks (e.g. Roedig et al. 2012; Farris et al. 2014; Muñoz & Lai 2016; D’Orazio et al. 2016).
While significant uncertainties remain in understanding these accretion flows, the general pattern emerg-
ing is that three distinct mass-ratio regimes exist. For extreme mass-ratios (q ≲ 10−2), the secondary is a
minor perturbation to the circumbinary disk, and the accretion flow remains steady. At intermediate mass
ratios (10−2 ≲ q ≲ qcrit, where qcrit ≈ 1/3), a gap is opened by the secondary and the accretion rate onto it
varies by a factor of a few, on the binary orbital period.

For near-equal mass ratio systems (q ≳ qcrit), a highly distorted cavity is evacuated around the bi-
nary, out to roughly twice the binary separation. At the outer edge of the cavity, a significant over density
of material develops. The keplerian orbital period of that over density sets the variation timescale as 5 – 6
times the binary period. The binaries we are considering (i.e. M > 106 M⊙, τorb ∼ yr) are almost always
in the GW-dominated regime in which the hardening timescale—the duration a given binary spends at
that separation—decreases rapidly with decreasing orbital period. Thus, if a given variational timescale is
probing binaries at shorter periods, the number of observable systems decreases.

In our fiducial models, we assume that all binaries with mass ratios above qcrit = 1/3 are observable
at τvar = 5 τorb. The accretion-rate variations in simulations predominantly effect the secondary MBH (e.g.
Farris et al. 2014), so we model the overall hydrodynamic variations as,

δF h
ν ≡

∆F h
ν,2

Fν,1 + Fν,2
= Fν,2(M2, χfEdd,2) − Fν,2(M2, fEdd,2)

Fν,1 + Fν,2
, (4.13)

where we take the effective enhancement to the accretion rate as χ = 1.5. In §4.4.2 we explore alternative
values of χ, and the importance of the τvar assumption.

4.3 Results

4.3.1 Doppler Variable Binaries

The doppler-induced variability amplitudes for a grid of mass ratio and total mass, at a period τorb =
1 yr, are shown in Fig. 4.5. The system accretion-rate is set to fEdd,sys = 1, and the accretion partition-
function, λ(q), gives the relative accretion rate onto the primary and secondary. The secondary accre-
tion rate is shown in the green color-bar to the right. Following the definition of the doppler variability-
amplitude (Eq. 4.12), the secondary’s variations are dominant when negative (blue) and the primary’s
when positive (red).
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Figure 4.5: Doppler-induced variability amplitudes as a function of binary mass-ratio and total-
mass. Blue colors denote regions where the secondary’s variations are dominant while red denotes that of
the primary. An orbital period of τorb = 1 yr is assumed, and a system accretion-rate fEdd,sys = 1. The
accretion rate onto the secondary is shown in the green color-bar to the right. The hashed regions corre-
spond to luminosities below the detection threshold for LSST (circles) and CRTS (dots) at redshift z = 1.

The secondary’s variation tends to dominate for systems with q ≳ 10−2. When the primary domi-
nates, the overall amplitude of variation is undetectably small (≲ 10−4). Systems with the largest varia-
tional amplitudes are concentrated around the largest masses, and mass-ratios near q ≈ 0.1. While the
region of parameter space with variations above δF d

ν ≳ 0.05 is very small for fEdd,sys = 1, i.e. only sys-
tems with M ≳ 2 × 109 M⊙, it increases for lower Eddington ratios. At fEdd,sys = 10−1, systems with
M ≳ 2 × 107 M⊙ can produce the same variability amplitudes.

The total luminosity of the system is tied closely to its total-mass. Near q ≈ 0.1, the accretion-rate
onto the secondary is significantly enhanced which decreased the luminosity of the primary—and thus the
system overall. The hatched regions of Fig. 4.5 show systems with v-band spectral-fluxes below the LSST
(circles) and CRTS (dots) thresholds for systems at a fixed luminosity distance of dL(z = 1) ≈ 6.5 Gpc. At
this distance, Eddington-limited systems can be seen down to M ≈ 2 × 108 M⊙ and M ≈ 3 × 106 M⊙ for
CRTS and LSST like flux limits respectively.

4.3.1.1 Event Rates

The population of observable, doppler-variable MBHB is shown in Fig. 4.6. The number-density
of sources per decade of period is plotted for different total-mass bins. The dotted lines show the total
number-densities of all binaries, while the solid lines show systems observable by CRTS-like (left-panel)
and LSST-like (right-panel) surveys. Results are also shown in terms of occurrence rate relative to the
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Figure 4.6: Observability of Doppler-Variable MBH Binaries versus period for CRTS (left) and
LSST (right). The density of all binaries are shown with dotted lines, while observable systems are shown
with solid lines. The densities are given per decade of binary period, i.e., the total number of binaries at
any period is found by integrating these curves over d log(τorb). The left y-axes show systems in terms of
volume densities, while the right y-axes give their number relative to that of all observable AGN for the
same survey. The dashed, horizontal line indicated the number-density corresponding to a single, expected
source to be detectable (i.e. the inverse of ≈ 4 × 105 AGN expected to be observed by CRTS, and ≈ 107 by
LSST).

number of observable AGN with the same instrument, which provides a more robust comparison to real
observations.

The number-density of all binaries (dotted) is significantly higher for lower total-masses due to the
strongly declining mass-function of MBH. In general, the density also declines sharply with decreasing
orbital period, reflecting the GW-hardening timescale, τgw ∝ τ

8/3
orb , by which nearly all binaries at these

periods will be dominated∗. The systems which are observable as doppler-variables tend to be much more
massive—for CRTS, predominantly above 109 M⊙. Observable systems tend to preserve a similar period
dependence, with nearly two orders of magnitude fewer systems at τvar ≈ 1 yr than at τvar ≈ 5 yr. A fu-
ture, more sensitive instrument like LSST can observe lower-mass systems: dominated by those between
108 – 109 M⊙. Even binaries between 107 – 108 M⊙ are theoretically detectable at τvar ≈ 1 yr, but their
occurrence rates may be too low to be seen. For comparison, the inverse of the total number of AGN ex-
pected to be detected by CRTS (≈ 4 × 105) and LSST (≈ 107) is shown by the dashed, horizontal grey
lines which give a sense of the minimum plausibly-detectable occurrence rates.

At periods between 1 – 5 yr, our models predict 9 doppler-variable MBHB to be observable by a
CRTS-like survey, corresponding to 2 × 10−5 AGN−1 (2 × 10−11 arcsec−2 out to redshift zmax = 2). With
LSST, this increases substantially to about 500 binaries, or 3 × 10−5 AGN−1 (9 × 10−10 arcsec−2). While
this detection rate is roughly an order of magnitude lower than the candidates from CRTS and PTF, it is
encouraging that numerous real binaries are could be present in the data.

∗The plot of ϕ for all MBHB in the 106 – 107 M⊙ bin flattens out significantly at τorb ≳ 1 yr because envi-
ronmental interactions, such as stellar-scattering, are still effective in this regime. Those interactions increase the
hardening rate and thus decrease the number of binaries at those periods.
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Figure 4.7: Detection Efficiency of Doppler-Variable MBH Binaries versus total mass (left) and
mass ratio (right) for both LSST parameters (solid) and CRTS (dashed). Doppler-variable systems are
only detectable when they have sufficiently large orbital velocities, leading to a strong drop-off in detection
efficiency for lower-mass systems, especially at longer orbital periods. Lower mass-ratio systems tend to
have larger velocities, but very low-mass secondaries become difficult to observe. This leads to a sweet-
spot in mass-ratio for doppler-observability between q ≈ 0.03 – 0.07.

4.3.1.2 Observation Efficiency

Figure 4.7 shows the efficiency of detection, i.e. the fraction of all systems which are observable, ver-
sus total mass (left) and mass ratio (right). Doppler-variable systems are only detectable when they have
sufficiently large orbital velocities which leads to a strong drop-off in detection efficiency for lower-mass
systems, especially at longer orbital periods. The highest efficiencies are achieved for the most massive sys-
tems, reaching ≈ 10−2 for CRTS and almost 10−1 for LSST. The total number of binaries is dominated
by low-mass systems which are generally undetectable. Thus, at a given mass-ratio and marginalized over
total masses, the efficiencies are extremely low: < 10−4 for CRTS and ≲ 10−3 for LSST. There is a fairly
well defined, efficiency sweet-spot for systems with mass-ratio between q ≈ 0.03 – 0.07. This is determined
by the interplay of lower-mass secondaries having larger velocities, but eventually becoming too faint to
observe effectively.

The strong mass-dependency in detection efficiency strongly affects what binaries will be observed as
doppler-variables in a given survey. This has important consequences for the implied GWB from a given
set of observed systems. Consider a hypothetical set of doppler-variable binaries observed in an optical
survey. The total-mass dependency implies that nearly all observed systems have M ≳ 3 × 109 M⊙, and
less than ∼ 1% of all such binaries are observed. Furthermore, the mass-ratio dependence suggests that
all of these systems have q ≲ 0.1. Binaries with q ∼ 1 are roughly three times more common for periods
of ∼ 3 yr (see Fig. 4.11), and each produces GW strains roughly ten times larger∗. Finally, recalling that
strain amplitudes add in quadrature, this suggests that the GWB has a strain ≈ 50 times larger than the

∗Strain is related to chirp-mass as, h ∝ M5/3, and the chirp-mass is M ≡ Mq3/5/(1 + q)6/5.
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direct sum of the GW from the observed population itself.

4.3.2 Hydrodynamically Variable Binaries

4.3.2.1 Event Rates

The population of observable, hydrodynamically variable MBHB is shown in Fig. 4.8. Overall, ob-
servabilities for hydrodynamic variables are typically two orders of magnitude higher than for doppler
variables. Between 1 – 5 yr variability periods, for CRTS-like parameters, our model predicts roughly 103

systems to be observable, corresponding to 3 × 10−3 AGN−1 (2 × 10−9 arcsec−2). This is notably higher
than the occurrence rate of candidates identified in both CRTS and PTF, at rates of 5 × 10−4 AGN−1 and
10−3 AGN−1 respectively. For an LSST-like survey, the predicted detection rate jumps to 5 × 104 binaries,
or 4 × 10−3 AGN−1 (10−7 arcsec−2).

The increased detection rates are driven primarily by the lack of explicit mass-dependence or period-
dependence for hydrodynamic variability. The total-mass detection efficiency of doppler variables drops
off rapidly for low mass systems, which dominate by number. Hydrodynamic variability only depends ex-
plicitly on mass-ratio, drastically increasing the available parameter space. This effect can be seen directly
by comparing the CRTS rates between Fig. 4.6, and Fig. 4.8. In the latter, the detected systems between
109–1010 M⊙ increases by an order of magnitude, while that of 108–109 M⊙ systems increases by almost
three orders. While doppler-variable 107–108 M⊙ systems are marginally observable near τvar ≈ 1 yr, the
corresponding hydrodynamically variable systems are observable at rates comparable to 108–109 M⊙ at all
periods.

4.3.2.2 Observation Efficiency

Figure 4.9 shows the efficiency of detection versus total mass (left) and mass ratio (right) for hydro-
dynamically variable systems in different variability-period bins. Compared to doppler variability, the ef-
ficiency is relatively insensitive to total-mass, as mentioned above. With respect to both total-mass and
mass-ratio, there is a strong trend towards lower detection efficiencies for shorter period systems. This
seems to be driven primarily by disk truncation, which can significantly reduce the luminosity of each
MBH’s disk. While the same effect is present for doppler variables, it is countered by the increasing orbital
velocities at shorter periods.

The efficiency of hydrodynamic-variable detection with respect to mass-ratio is predominantly driven
by two effects. First, for mass ratios q ≪ 10−1, the accretion rate to the secondary begins to drop off,
leading to a strong decrease in detection efficiency. This effect is identically present for doppler-variables
as well. Second, for mass ratios q > qcrit = 0.3, the variability timescale is shifted to τvar = 5 τorb, which
probes a much smaller population of systems at smaller orbital separations. This leads to a decrease in
detections for high mass-ratio systems which mimics that seen in doppler-variables, although in that case
due to lower secondary orbital-velocities.
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Figure 4.8: Observability of Hydrodynamic-Variable MBH Binaries versus period for CRTS
(left) and LSST (right). The total number of binaries are shown with dotted lines while the observable
systems are shown with solid lines. Rates are given both in terms of number-density and relative to the
number of observable AGN in the same survey.
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Figure 4.9: Detection Efficiency of Hydrodynamically-Variable MBH Binaries versus total
mass (left) and mass ratio (right) for both LSST parameters (solid) and CRTS (dashed).
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4.4 Discussion

In this paper, we make predictions for the electromagnetic detection of MBH binaries as variable
AGN. We use a population of binaries drawn from cosmological hydrodynamic simulations of MBH and
galaxies, evolved using semi-analytic, post-processing models of the detailed merger physics. Using syn-
thetic spectra of AGN emission, along with models of both doppler and hydrodynamic variability, we have
calculated detection rates for surveys with flux and variability sensitivities comparable to CRTS and LSST.
Here we present the results and implications of our study, after first discussing their limitations.

4.4.1 Caveats

Numerous limitations exist in our current methods, both in terms of our binary populations and our
models of variability. In the former class, while the masses of MBH in Illustris nicely reproduce the ob-
served, redshift zero BH–galaxy scaling relations (Sijacki et al. 2015), there is still significant uncertainty
in the full distribution of MBH masses (e.g. McConnell & Ma 2013). The MBH accretion rates have been
calibrated to produce accurate masses and reproduce observational, bolometric luminosity functions (Si-
jacki et al. 2015). Using spectral models, and a simple model of obscuration, applied to the entire popula-
tion of Illustris MBH, we predict a totally number of observable AGN (see Table 4.1) which differs by only
20% from CRTS observations (although we have not taken into account spectroscopic completeness). Still,
the Illustris models were not designed with detailed spectral modeling in mind, and the 20% error surely
underestimates systematic errors as seen in the discrepancies between our b-band luminosity-functions and
observations (Fig. 4.4), for example.

When it comes to systems of high total-mass, our populations suffer from small-number statistics. As
a method of reducing these effects, we have treated our binary population as averaged over redshift. In
reality, the population of binaries at ∼yr periods are likely clustered near z ≈ 1.0 (see Fig. 4.10), which is
not accounted for in our analysis, and similar to the known redshift distribution of AGN.

Instead of using bolometric luminosities and corrections or characteristic spectral indices, we have
constructed full spectral models for each of the MBH in our binary populations. Still, these spectra are
highly simplified in the complex and actively developing field of AGN emission. Perhaps the most impor-
tant deficiency of our spectral models are the lack of any lines, extinction, or contributions from outside of
the disk. We also do not consider any intrinsic AGN variability. Full spectroscopic observations of AGN,
including variations between observing epoch, should be incorporated into calculations to carefully con-
sider the effectiveness with which photometric variability can be accurately classified.

We have also relied very strongly on the results of Farris et al. (2014), which use 2D, isolated, purely-
hydrodynamic simulations. Other groups have supported the Farris et al. (2014) results whose conclusions
seem robust for their simulated conditions. Accounting for thick-disk accretion (and mass flow out of the
disk plane, possibly enhanced by magnetic fields and radiation), and turbulent flows with varying inflow
rates on large scales, are likely to change some of these results (at least quantitatively, if not qualitatively).
In §4.4.2 we explore variations to many of our model parameters and assumptions, but our results seem
quite robust.

Overall, we expect most of the simplifications and uncertainties in our models to tend towards fewer
systems being observable as variables. Firstly, because biases in the M–σ relation likely indicate lower
overall MBH masses and luminosities. Secondly, thick-disk and turbulent accretion flows are more likely
to smooth-out the periodic variations in emission rather than enhance them. Thirdly, AGN are known
to exhibit strong intrinsic variability especially at low-frequencies which easily mimic periodicity. While
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our model for variability sensitivity (Eq. 4.8) is based on observational studies of signal identification, it is
extremely simplistic accounting for a very difficult task as shown in the careful analysis of Graham et al.
(2015a), Charisi et al. (2016), and Liu et al. (2016). Finally, we believe it is likely that the accretion rates
onto the binary MBH from Illustris are likely biased high. Taking these factors into account, we consider
our predictions to be most robust as upper-bounds to expected detection rates.

4.4.2 Conclusions

A summary of expected detection rates for variability periods between 1 – 5 yr are presented in Ta-
ble 4.1. The sensitivities of current instruments like CRTS are likely to observe MBH binaries at roughly
2×10−5 AGN−1 and 3×10−3 AGN−1 for doppler and hydrodynamic variability, respectively, corresponding
to roughly 9 and 1,000 sources in an all-sky survey. These expectations are an order of magnitude below
and above the number of candidates put forward in CRTS by Graham et al. 2015a (which are consistent
with the rate of candidates from Charisi et al. 2016, and the upper limits from Liu et al. 2016). While
there are reasons to expect that the published candidates contain false positives (e.g. Sesana et al. 2017b),
our predictions indicate that there should exist a large number of true MBH binaries within the popula-
tion.

Doppler variable sources are difficult to observe, primarily because near-relativistic orbital veloci-
ties are required to produce detectable oscillation amplitudes. Systems with high enough mass, and small
enough orbital separations, tend to merge very quickly. Out of the published data sets, the large CRTS
sample is most likely to contain doppler-variable binaries—up to ∼ 10% of the 111 candidate systems.
Doppler variables should exhibit a characteristic spectral dependence (see Eq. 4.11 and D’Orazio, Haiman
& Schiminovich 2015) which could be identified with continued spectroscopic, and perhaps even multi-
band photometric, monitoring. Simply extending the observational baselines, while maintaining broad-
band temporal coverage, will of course also provide a powerful determinant in distinguishing red-noise con-
taminated systems.

Hydrodynamic variability is much less sensitive to binary mass and period, and thus probes a much
broader parameter space replete with systems. Our models predict almost an order of magnitude more
hydrodynamically variable systems to be observable than the number of published candidates. While a
bias towards high accretion rates may cause a portion of this discrepancy, we believe it is likely that the in-
duced, periodic hydrodynamic-variability is often drowned out by other aperiodic variations in the AGN
luminosity. For example, disk turbulence and time-varying feeding rates of gas will not only introduce
their own luminosity fluctuations, but also decrease the coherent, periodic variations seen in smooth, simu-
lated accretion flows. Some simulations have also seen accretion alternate from primarily feeding one MBH
to then predominantly feeding the other, even in otherwise smooth disks. This introduces a significant
complication in separating AGN with significant red-noise from those which are binaries, but exhibit ex-
cursions from periodicity to due other disk phenomena.

Our models suggest that doppler-variable systems observable with current instruments should be en-
tirely composed of binaries with total masses Mtot > 108 M⊙, and dominated by systems with Mtot >

109 M⊙. Even with a future instrument like LSST, few if any systems with Mtot < 108 M⊙ are likely
to be observed. The situation is very different for hydrodynamic variables which, again, have no strong
mass dependency on their variability amplitudes. Our models suggest that 107 – 108 M⊙ systems and
108 – 109 M⊙ systems should be observed with similar rates, while systems at Mtot > 109 M⊙ should be
≈ 10 times less common. Because of their relative rarity, doppler-variable systems are unlikely to be ob-
served below τvar ≈ 2 yr, while hydrodynamically-variable systems could be seen at periods as short as
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Observable, Variable Binaries AGN

Doppler Hydrodynamic

CRTS LSST CRTS LSST CRTS LSST

arcsec−2 2 × 10−11 1 × 10−9 2 × 10−9 1 × 10−7 9 × 10−7 3 × 10−5

number 9 × 100 5 × 102 1 × 103 5 × 104 4 × 105 1 × 107

AGN−1 2 × 10−5 3 × 10−5 3 × 10−3 4 × 10−3 - -

Table 4.1: Expected Observability of MBH Binary, Periodically Variable-AGN with periods
between 1 and 5 years. Detection rates for surveys with parameters based on CRTS and LSST are shown,
for doppler variability in the first two columns and hydrodynamic variability in the next two. The last
two columns give the expected detection rates for (single) AGN. The first row gives detections per square-
arcsecond, while the second row gives the total number of expected detections assuming a 33,000 deg2 sur-
vey. For comparison, CRTS actually observes 3.3 × 105 AGN (Graham et al. 2015a). The last row presents
rates of binaries relative to the predicted number of AGN, which is likely less subject to systematic uncer-
tainties in our luminosity functions and spectral models.

τvar ≈ 0.3 yr.
Both doppler and hydrodynamic variability strongly favor systems with mass-ratios q ∼ 0.1, in our

fiducial model. In the case of doppler variability, this trend is due to the larger orbital velocities of sec-
ondary MBH which have lower mass-ratios. For mass ratios q ≲ 10−2, the secondaries become too faint,
and their variability signatures are harder to identify. The bias towards q ∼ 0.1 is enhanced by the height-
ened accretion rates for secondary MBH near that mass-ratio, which we impose based on the results of
Farris et al. (2014). The accretion-partition function has the same effect on hydrodynamic variables. At
the same time, binaries with q ≈ 1 are observed less effectively because their variability periods are shifted
to much lower frequencies. Observing variability signatures at year periods are thus probing near equal-
mass systems at much smaller orbital separations, where binaries merge more quickly, and thus where
fewer systems are observable.

Sesana et al. (2017b) show that the CRTS candidates are in tension with current PTA upper limits
on the presence of a GW background (GWB). Taking into account the parametric dependencies discussed
above may increase that tension. In particular, Sesana et al. (2017b) show that if the intrinsic distribu-
tion of binary mass-ratios is biased towards lower values of q, those binaries produce weaker GW, and thus
decrease tensions between the candidate populations and the PTA limits. Our binary populations have
relatively flat mass-ratio distributions (with slight bias towards high q), and the selection effects suggested
by both our doppler and hydrodynamic variability models imply that the binaries which are observed tend
to have lower mass-ratios. This observational bias has the opposite effect of a low-q population, implying
that high-q systems, which dominate the GWB, are absent from the observational candidates, and would
push the expected GWB amplitude higher. None the less, the total number of candidates identified (or
excluded) by CRTS, PTF, and Pan-STARRS are all lower than our predicted rates of hydrodynamic vari-
ables, making the comparisons with the GWB estimates from our population non-trivial.

In conclusion, many MBH binaries should be present as periodically variable AGN in current optical
surveys. Our understanding of the accretion rates onto year-period binaries, and the amount of intrinsic
variability in accretion flows on similar scales is the largest uncertainty in understanding and identify-
ing these systems. The work and candidate populations by Graham et al. (2015a), Charisi et al. (2016)
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and Liu et al. (2016) present an incredible boon to AGN and MBH binary astrophysics. These candidates
likely contain examples of sub-parsec MBHB which hitherto have never been confirmed. Such systems con-
tain key information on MBH growth, MBH binary evolution, and offer stringent constraints and insights
into our predictions for low-frequency GW signals soon to be detectable by PTA.
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Supplemental Material

Additional Figures

Figure 4.10 shows the distribution of redshifts for Illustris binaries when they reach an orbital period
of τorb = 1 yr. Out of ≈ 30,000 total binary mergers in Illustris, about 10,000 pass our selection cuts to
assure both constituent host-galaxies are resolved (see, Kelley, Blecha & Hernquist 2017). Out of those,
roughly 2,500 reach τorb = 1 yr before redshift zero, which are shown here. The grey histogram shows the
distribution of all binaries while the colored lines show those of systems with the indicated total-masses
and also with a mass ratio q ≥ 10−2. The mass-ratio cut only affects the systems with Mtot > 108 M⊙

(because the minimum MBH mass we consider is 106 M⊙), and does not significantly effect their shape.
While there is a noticeable tail of mergers down to redshifts z ≲ 10−1, the volume of the universe in this
region is very small. To illustrate this, the distribution of binaries, weighted by comoving volume at each
redshift bin, is shown with the dashed grey line which is entirely dominated by sources between z = 0.5 −
5.0.

The parameters of all binaries (dashed) versus those which are observable as periodically-variable
AGN (solid) are presented in the following figures. The left panel gives number-densities as a function
of total mass, while the right gives them as a function of mass ratio. In each case a variety of orbital pe-
riods are shown (colors). The doppler-variable model is presented in Fig. 4.11 & Fig. 4.12 for CRTS &
LSST respectively, while the hydrodynamic-variable model is presented in Fig. 4.13 & Fig. 4.14. Detection
efficiencies—the ratios of observable- to all- systems—are presented in Figs. 4.7 & 4.9, doppler & hydrody-
namic variability respectively. Knowing the total number of systems, however, is important for understand-
ing selection effects, especially when inferring GWB amplitudes implied by an observed binary population
(see §4.3.1.2 & §4.4).

For doppler variability (Figs. 4.11 & 4.12), there is a critical total-mass (left panels) at which the
number of observed binaries drops rapidly for both CRTS and LSST, though for the latter the mass is
much lower. This trend is a strong function of orbital period, as larger masses are required to obtain a
given doppler-boost as periods increase. The observed number of sources drops significantly at high mass-
ratios (right panels), while the actual number of systems with higher mass-ratios increases. This is due to
two factors. First, the secondary—which tends to dominate the variability emission due to larger accretion
rates—has smaller orbital velocities for higher mass-ratios. Second, the variability of the MBH is always
opposite in phase, thus systems with more equal-masses tend to more effectively cancel out each-other’s
luminosity variations.

Hydrodynamic variability (Figs. 4.13 & 4.14) is much less sensitive to the total mass of the binary
(left panels), where the observed systems are fairly consistently proportional to all binaries. The mass-
ratio dependence (right panels) however show a similar peak in sensitivity near q ≈ 0.1. The decrease at
higher mass-ratios is due primarily to our model assumption that the variational period is shifted to be a
longer multiple of the orbital period for systems with high mass-ratios (see §4.2.4.1).
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Figure 4.10: Redshift distribution of binaries reaching τorb = 1 yr, from the Illustris comoving volume of
Vill = (108 Mpc)3. The grey histogram shows the distribution of all systems, while the colored lines show
those of binaries with total masses in the given range, and with mass ratios q ≥ 10−2. The grey dashed
line shows the distribution of all binaries, but weighted by the comoving volume of the universe for the
given redshift bin.
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Figure 4.11: Doppler variable, CRTS-observable MBHB.
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Figure 4.12: Doppler variable, LSST-observable MBHB.
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Figure 4.13: Hydrodynamically variable, CRTS-observable MBHB.
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Figure 4.14: Hydrodynamically variable, LSST-observable MBHB.

157



www.manaraa.com

MBH Binaries as Variable AGN 4.4 - Discussion

Model Effects and Parameters

Our models of AGN variability include a variety of effects, and depend on many uncertain parame-
ters. Figure 4.15 compares our fiducial detection rates with variations from different parametric changes
to our models. Each line shows the ratio of detection rates for the varied model compared to that of the
fiducial model, where detection rates are normalized to the expected number of observable AGN. The
left panel shows doppler-variable binaries while the right shows hydrodynamically-variable ones, and in
each case dashed lines show the ratio of systems which are bright enough to be observable (i.e. are above
the CRTS flux limit), while solid lines show those with variability at a sufficient amplitude to also be de-
tectable. The variations we consider are meant to illustrate both parametric uncertainties and the signifi-
cance of particular physical effects. The alternative models shown are described below.

• Orange: neglecting AGN obscuration. Obscuration decreases the number of observably variable bi-
naries by roughly a factor a four, but because the total number of observable AGN are decreased by
nearly the same factor, the rate per AGN is nearly unaffected.

• Purple: scaling the accretion rate of each component MBH proportionally to its mass, i.e. λ ≡
Ṁ2/Ṁ1 = q (the fiducial model, based on Farris et al. 2014, is shown in Eq. 4.1 and Fig. 4.1). For
both variability models, the secondary MBH is almost always the source of observable periodicity.
Scaling the accretion rate of each component MBH to its mass produces significantly lower accretion
rates to the secondary than using the Farris et al. 2014 model, thus significantly decreasing their
observability as variable sources (solid lines). Because the total accretion rate to the system is un-
changed, the number of sufficiently bright sources (dashed lines) are relatively unchanged, although
slightly increased because more material is going to the brighter primary MBH. Doppler-variable
sources are preferentially lower mass-ratio (those with larger secondary orbital velocities), and thus
the observability of variable systems is almost entirely hindered, except for systems with extremely
short orbital periods. For LSST, recall that our fiducial model predicts ∼ 10−7 AGN−1 binaries
observable at these short periods (see Fig. 4.6), corresponding to order-unity doppler-variables de-
tectable at ∼ 0.3 yr. If accretion is proportional to mass, the rate is decreased by another factor of
∼ 20, making any detections very unlikely.

• Green: ignoring truncation of each MBH’s accretion disk. Because each MBH is in a binary, its ac-
cretion disk can only extend to roughly their Hill spheres. The green curves show that this effect is
very significant for both the overall brightness of sources and their detectable variability, especially
at smaller binary separations (shorter periods). Using simple luminosity scaling arguments, which
neglect disk truncation, will break down for periods below ∼ 1 yr.

• Blue: AGN variations at the orbital period. Some hydrodynamic simulations suggest that high mass-
ratio systems will exhibit variability at periods roughly five times longer than the binary period,
corresponding to the orbital time of an over-density of material at the outer edge of the gap in the
disk. For these systems, observed periodicity at ∼ 1 yr is actually coming from sources with orbital
periods of ∼ 0.2 yr, which are far less numerous. This hydrodynamic, frequency shift is not seen
in all simulations. The model shown in blue assumes that the observed periodicity is always at the
orbital period (i.e. unshifted), which significantly increases the number of observable systems by a
factor of 3 – 5.

• Red: increased hydrodynamic variability-amplitude. In our fiducial model, we assume that the am-
plitude of accretion variability in the hydrodynamic model is χ = 1.5. In the simulations of Far-
ris et al. (2014), the authors find different variability amplitudes with different mass-ratios, gener-
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Figure 4.15: Comparison of CRTS detection rates for parametric changes from our fiducial models. Each
line shows the rate of observable-binaries per observable-AGN for the given model, divided by that of the
fiducial model. The left panel shows doppler variables, while the right shows hydrodynamic ones. The fol-
lowing parametric variations are considered: (orange) ignoring obscuration of AGN emission; (purple) as-
suming that the accretion rate to each object is proportional to the mass ratio, i.e. λ = q; (green) ignoring
truncation of each MBH’s accretion disk; (blue) AGN variation occurs at the orbital period, regardless
of mass ratio; (red) the hydrodynamic variability-amplitude (χ) is increased from 1.5 to 2.0; and (yellow)
Eddington limited accretion for each MBH. Dashed lines show systems which are bright enough to be ob-
servable by CRTS, while the solid lines are systems which are both sufficiently bright and produce an ob-
servable amount of variability.

ally varying from ∼ 1.5 – ∼ 3.0. The model shown in red increases the variability amplitude to
χ = 2.0, which has little effect for long-period systems but up to a factor of two increase at short
periods. Because long-period systems dominate, the overall change to detection rates is on the order
of ∼ 10%. This is because the luminosity scales roughly with accretion rate, and even a 50% change
in luminosity is easily observable in most systems. The effect increases at low frequencies because
disk-truncation leads to more and more competition from the varying amplitude of the secondary
MBH with the constant emission of the primary.

• Yellow: Eddington limit the accretion rate in each disk. Our fiducial model limits the combined ac-
cretion rate onto both MBH to the Eddington value. Because the accretion rate to the secondary,
for moderate to large mass-ratios, is larger than the primary it can exceed the Eddington limit indi-
vidually. The model shown with the yellow line assumes that both the combined and the individual
accretion rates are both Eddington limited. Conceptually, this corresponds to effective regulation of
the gas inflow even at small scales, or alternatively to the assumption that the radiative efficiency
does not increase for Eddington fractions above unity∗. This model yields a small decrease to the
number of doppler-variable sources, ≈ 10%; and a more significant decrease to hydrodynamically-
variable ones, ≈ 60%. The higher sensitivity to the accretion limit for hydrodynamically-variable
systems is likely due to their sources tending to be at slightly higher mass-ratios (q ≈ 0.1) which is
closer to the peak of the accretion partition function.

∗Some simulations have shown that the radiative efficiency increases only logarithmically for super-Eddington
accretion rates in the ‘slim’-disk regime (e.g. Madau, Haardt & Dotti 2014).
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Overall, uncertainty in how the accreting material is partitioned between MBH in the binary leads
to the largest variations in our predicted populations. While our fiducial model of accretion which is en-
hanced for the secondary MBH produced many detectable doppler and hydrodynamically variable binaries
by current surveys like CRTS. If the accretion is instead directly proportional to mass, then doppler vari-
ables are unlikely to ever be detected, even by LSST, and the number of hydrodynamic variables may be
up to five times fewer. The relationship between orbital timescale and variational timescale also produces
a significant effect, with our fiducial model predicting more conservative detection rates. We have also ex-
plored numerous other parametric variation to our models which were not included in Fig. 4.15, which all
produce more minor effects. This is partially because we are normalizing our detection rates by the num-
ber of expected observable AGN. For example, doubling the sensitive flux of our modeled CRTS survey
leads to a significant increase in the total number of predicted AGN and variables which are observable,
but the variable rate is only changed by ∼ 10%.
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5
Conclusions

5.1 Summary

In this thesis, we have made detailed predictions for the populations, lifetimes, and environments of
MBH binaries using comprehensive models of the binary-merger process and state of the art, cosmological,
hydrodynamic simulations. We have made calculated the prospective properties of both the GW back-
ground and individually-resolvable single-sources, along with expected times to detection using realistic
models of pulsar timing arrays. In anticipation of the many multi-messenger opportunities between PTA
and electromagnetic observations, we have explored the consistency between recently identified periodically-
variable, MBHB candidates and the most stringent upper-limits on GW signals. We also generate predic-
tions for the occurrence rates and parameter distributions of periodic-variable systems to better under-
stand models of variability, the candidate populations, and to detection rates with future surveys.

In Ch. 1 (Kelley, Blecha & Hernquist 2017), we present our population of MBH binaries and their
host galaxies derived from the Illustris cosmological hydrodynamic simulations. We detail our methods:
using post-processing, semi-analytic models of the merger process to explore the parsec and sub-parsec
scale dynamics which are unresolved in Illustris. The primary uncertainty in merger modeling is the ef-
fectiveness of refilling the stellar loss-cone, which largely determines what binary parameters can merge
within a Hubble time. If refilling is inefficient, binaries with low total-masses (M ≲ 108 M⊙) or with small
mass-ratios (q ≲ 10−2) are generally unable to coalesce before redshift zero. If loss-cone refilling is efficient,
then only systems with both low total-masses and low mass-ratios stall. Typical redshifts of coalescence
vary between z ∼ 0.4 – 1.0, depending on hardening parameters. The number of MBH systems which are
slow (or unable) to coalesce after the merger of their host galaxies suggest that three-body interactions
from a subsequent galaxy merger could be important.

We use a semi-analytic model to calculate the GW Background amplitude from our binary popula-
tions. The predicted amplitudes are relatively insensitive to merger parameters, as the GWB is dominated
by the most massive systems which, we find, tend to coalesce effectively. The maximum GWB amplitude
from our population is Ayr−1 ≈ 7×10−16, which is ≈ 30% below current PTA upper-limits, while more typ-
ical assumptions give amplitudes between Ayr−1 ≈ 3–6 × 10−16. Stellar scattering, which increases the rate
of binary inspiral at larger separations, decreases the amount of GW energy binaries can emit at lower
frequencies. We find that this significantly flattens the GWB spectrum from the canonical −2/3 strain
spectral-index. For the most effective stellar scattering, this turnover can occur at frequencies as high as
0.06 yr−1 ≈ 2 nHz, which we do not expect to significantly hamper detection prospects with PTA.

Chapter 2 (Kelley et al. 2017) is dedicated to a careful calculation of the GWB, including numerous
improvements to the methodology. In terms of dynamics, we present additions to our models to include
eccentric binary evolution. In terms of the GWB calculation, we replace the semi-analytic models with
Monte Carlo (MC) techniques—which better account for the finite population of binaries and for cosmic
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variance. We show that eccentricity only significantly alters binary evolution when binaries are formed
with highly elliptical orbits (e0 ≳ 0.9). Still, systems with initial eccentricities of e0 = 0.5 can enter the
PTA band maintaining notably non-circular orbits, with e ≈ 0.4. There are two primary effects of eccen-
tricity on the GWB. First, non-zero eccentricity leads to more effective binary coalescence, which leads to
increased attenuation of the emitted GW energy. Second, GW energy is shifted from lower to higher fre-
quencies as individual binaries emit GW not only at twice the orbital period, but also at higher harmonics.
For all but the highest initial eccentricities (e0 ≳ 0.95), non-circularity tends to slightly increase the GWB
amplitude at PTA-sensitive frequencies. At high frequencies, eccentricity also remediates the steepening
of the spectrum as the eccentric redistribution of GW energy leads to additional binaries contributing at
higher observed frequencies. If the high-frequency spectrum can be measured in the future, it may be able
to provide constraints on the binary-eccentricity distribution. At low frequencies, eccentricity tends to in-
crease the strength of the GWB spectral turnover, but the location of the turnover still tends to be below
the current PTA-band. In the future, observational constraints on the location of the turnover could pro-
vide insights into the typical properties of stellar environments around MBHB.

In this analysis, we also carefully examine plausible times-to-detection with parametrized models of
each existing PTA. Based on our fiducial models, we find that all PTA should reach ∼ 95% detection prob-
ability between 2026 and 2034. If the International PTA is effective at combining data from the individual
PTA and improving noise characterization, 95% detection probability could be reached as soon as 2024–
2026. Times to detection vary by only a few years depending on hardening and eccentricity parameters
which tends to be comparable to the variance between realizations.

In Ch. 3 (Kelley et al. 2018a), we turn our attention to signals from individually-resolvable, ‘de-
terministic’ sources which may be observable above the background. While previous studies have found
that these single sources are likely to be much harder to detect than the GWB, we find instead that they
should be detectable on comparable time-scales. At frequencies near 0.1 yr−1, we find that there is roughly
a 50% probability of a deterministic source producing timing residuals of ≳ 100 ns (corresponding to char-
acteristic strains hc ≈ 10−15). While individual binaries produce larger strains at higher frequencies, they
also evolve much more quickly. This means that statistically, higher amplitude binaries are more common
at lower frequencies. None the less, because the GWB decreases at higher frequencies, the occurrence rate
of singles which are able to resound above the background increases at higher frequencies. Single-source
properties are fairly insensitive to eccentricity, except for the largest values (e ≳ 0.95).

We also present the first careful analysis of the effects of varying models for pulsar red-noise in esti-
mated times to detection. Because red-noise dominates at low frequencies, as is expected from GW signals,
it can be a significant contaminant in the data stream. Additionally, as the lowest accessible frequency bin
depends on the total observing duration, red-noise can grow quickly with time. For these reasons, we find
that detection prospects for the GWB are very sensitive to red-noise model, and unfortunately, the charac-
terization of pulsar red-noise is remains highly uncertain. If all pulsars possess significant red-noise—which
is, however, unlikely—it could prevent GWB detection altogether. More realistic assumptions for red-noise
lead to delays in detection by a few years compared to white-noise only models which have typically been
used in the literature. Unlike the GWB, single-source detection prospects are relatively insensitive to red-
noise model as these deterministic sources are more common at higher frequencies.

Finally, in Ch. 4 (Kelley et al. 2018b), we predict the detection rates and parameter distributions
of periodically-variable AGN. We combine our simulated MBHB populations with two leading models of
producing flux variability: doppler-boosting, from the motion of systems with nearly relativistic orbital-
velocities; and hydrodynamic effects, which have been observed to produce periodically variable accretion
rates in simulations of circumbinary disks. We find that, while doppler-variable systems should be present
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in current survey data, they are likely too rare to explain the bulk of periodic-variability candidates. Ob-
servable doppler-variable systems are likely to have very large masses (≳ 109 M⊙) with intermediate mass
ratios (0.01 ≲ q ≲ 0.1). The hydrodynamic-variability mechanism is much less sensitive to the total-mass
of systems, which significantly increases the observable parameter space and thus their plausible detection
rates. In fact, relative to the published variability candidates, our models for hydrodynamic variables over-
predict the number of systems which should be observable. Likely the discrepancy is due to a combination
of factors, including the accretion rates from Illustris being too high, and especially that realistic accretion
flows onto each MBH will be more turbulent and intrinsically variable, both decreasing the sought after
sinusoidal oscillations, and increasing the amount of intrinsic variability (i.e. noise) from which periodic
signals must be extracted.

5.2 The Future

Many topics raised in this thesis are interesting for followup study, which we discuss here. Many
projects can be approached with no, or only minor, additional modifications to the existing code and
data sets. In particular: (1) calculating the electromagnetic observability of spatially offset (i.e. at ∼kpc
separations; e.g. Comerford & Greene 2014) and kinematically offset (spectroscopically identifiable; e.g.
Comerford et al. 2009a) binaries. In addition to the existing emission models we have constructed for ac-
creting MBH per se, models for their local environments (particularly stellar cores) are also important
for determining if the AGN will be identifiable. A related possibility is to consider the predicted observ-
ability of triple-AGN (e.g. Deane et al. 2014). Based on dual-AGN and galaxy-merger studies, we have a
sense of the increased rate of fueling to AGN during galaxy interactions. Limits on the occurrence rates
of triple-AGN systems could then be translated into constraints on the number of MBH stalled at kpc
scales. (2) We have already explored GWB and GW single-sources, but we have yet to make predictions
for GWB anisotropy (Mingarelli et al. 2013; Taylor & Gair 2013; Taylor et al. 2015), and for GW bursts-
with-memory (Braginskii & Thorne 1987; Cordes & Jenet 2012; Arzoumanian et al. 2015), where, after
MBHB coalescence, a permanent shift or ‘memory’ of the event remains and should be observable in pul-
sar timing. Our existing populations are sufficient to make predictions for both of these phenomena, sim-
ply additional analysis is required. (3) Calculating initial-eccentricity distributions of MBHB systems.
The lack of accurate positional information from Illustris MBH (see §0.1.2) means that our initial eccen-
tricity distributions had to be chosen arbitrarily. By tracking the nuclei of Illustris galaxies themselves,
however, we can calculate initial orbital parameters in post-processing.

Some projects which would require the development of moderate, additional frameworks are also ap-
parent. (4) Calculating the stellar tidal-disruption event (TDE) rate from MBHB, and the excavation of
galactic cores. The TDE rate is believed to be enhanced by the presence of an MBH binary (e.g. Li et al.
2015, 2017), but this has never been calculated in a cosmological or MBHB population setting. Such a
framework, would also lend itself towards examining whether the observed ‘cores’ in inner stellar-profiles
can be explained by the ejection of stars during binary hardening, as has been proposed (Lauer et al. 2002,
e.g.). (5) Incorporating three-body MBH interactions, and GW kicks into our merger simulations. Be-
cause the timescale for coalescence is often on the order of the Hubble time, subsequent galaxy mergers
can bring in a third MBH. Recent studies have suggested that this could be an effective means of forc-
ing some fraction of systems to coalesce regardless of environmental hardening mechanisms (Bonetti et al.
2017; Ryu et al. 2018). This is an important effect to consider in our existing calculations, as it could alter
our GW predictions. Additionally, following coalescence, systems are expected to receive ‘kicks’ from the
GW recoil (e.g. Blecha et al. 2016), which is also not included in our existing analyses.
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There are also exciting avenues to pursue which would require significant developments, both in our
existing methods, and requiring new tools and new simulations to be run. Specifically, developing high-
resolution zoom-in simulations with accurate MBH dynamics and smaller seed-masses would provide a
wealth of data for additional study. (6) Lower mass MBH would allow for predictions for LISA, which
will be sensitive to binaries down to ∼ 105 M⊙, which are currently unresolved by Illustris. LISA will also
be sensitive to much higher redshifts, necessitating MBH to be tracked at earlier stages in their evolution.
(7) Resolving spatial scales can significantly improve our understanding of the MBHB merger dynamics.
Using the Illustris data, we must extrapolate over many orders of magnitude to construct stellar and gas
density profiles for the calculation of environmental interactions. Resolving these stars and gas down to
∼ 1 or even ∼ 10 pc would test the methods of these extrapolations, and increase the robustness of our
calculations. Coupled with improvements to the MBH particle dynamics, the trajectories of MBH could
also be followed much deeper into their evolution before semi-analytic models are required to take over.
(8) Improved spatial resolution would could also significantly improve our understanding of gas flows and
AGN fueling during the merger process. This will be important for future infrared surveys like JWST and
WFIRST which will better probe obscured galactic cores in the midst of merger. Higher resolution gas
flows coupled to modern models for dust chemistry can also allow for drastically improved spectral models
of AGN, both in general and for studies of dual and offset systems.

We have presented a variety of results making significant progress in our understanding of MBH bi-
nary populations and evolution. The implications for both GW and electromagnetic observations demon-
strate an exiting future for multi-messenger observations of these systems in the next decade, and after.
As is typically the case, our results have opened as many new questions. The projects outlined above rep-
resent numerous clear directions in which we can continue to progress the field. MBH binaries and their
galactic environments offer a cornucopia of observations and physical phenomena to explore. I look for-
ward to their continued study.
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A
Appendix

1.1 Frequently used Abbreviations

ADAF Advection Dominated Accretion Flow
AGN Active Galactic Nuclei
BH Black Hole
CRTS Catalina Real-time Transient Survey
DF Dynamical Friction
DP Detection Probability
EM Electro-Magnetic
EPTA European Pulsar Timing Array
GW Gravitational Wave
GWB Gravitational Wave Background
GWF Gravitational Wave Foreground
IPTA International Pulsar Timing Array
JWST James Webb Space Telescope
LC (stellar) Loss-Cone
LIGO Laser-Interferometer Gravitational-wave Observatory
LISA Laser-Interferometer Space Antenna
LSST Large Synoptic Survey Telescope
MBH Massive Black-Hole
MBHB Massive Black-Hole Binary
NANOGrav North American Nanohertz Observatory for Gravitational Waves
Pan-STARRS Panoramic Survey Telescope and Rapid Response System
PPTA Parkes Pulsar Timing Array
PTA Pulsar Timing Array
PTF Palomar Transient Factory
SMBH Super-Massive Black-Hole
SNR Signal-to-Noise Ratio
VD Viscous Drag
WFIRST Wide-Field Infrared Survey Telescope
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1.2 Frequently used Symbols and Values

Symbol Name Usage
c Speed of Light 3.0 × 1010 cm/s
G Newton’s Gravitational Constant 6.7 × 10−8 cm3 g s−2

M⊙ Solar Mass 2.0 × 1033 g

εrad Radiative efficiency Eq. 1
LEdd Eddington Luminosity Eq. 2
ṀEdd Eddington Accretion Rates Eq. 3
hs GW Strain Eq. 4
M Chirp Mass Eq. 5
Ayr−1 GWB Amplitude at f = 1 yr−1 Eq. 6
hc Characteristic GW Strain Eq. 9
τdyn Dynamical Times Eq. 1.7
Frefill Loss-Cone Refilling Parameter Eq. 1.11

µ, q Mass Ratio µ ≡ M2/M1 ≤ 1
f Observed frequency f = fr (1 + z)
fr Rest-frame frequency fr = f/(1 + z)
Rs Schwarzschild Radius Rs ≡ 2 GM/c2

dL Luminosity Distance dL = dc (1 + z)
dc Comoving Distance dc = dL/(1 + z)
fEdd Eddington Fraction fEdd ≡ Ṁ/ṀEdd

Tobs Total observing duration
∆tobs Observing cadence
τvar Variability timescale
τorb Orbital timescale
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